Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ví dụ là 3k + 1 = 3 . 4 + 1 = 13
13 khi chia cho 3 thì còn dư 1 3k + 2 cũng vậy , 2 là số dư của phép tính đó
có tồn tại hay ko số tự nhiên k ( k thuộc N* ) sao cho 2003^k-1 chia hết cho 51
giúp minh ddeeeee =((
Ta có 2003 là số lẻ suy ra 2003^k cũng sẽ là số lẻ mà 1 lại là số lẻ suy ra 2003^k-1 là số chẵn mà 51 là số chăn suy ra 2003^k-1 không chia hết cho 51 vậy ko tồn tại
Lời giải:
a.
Bốn số tự nhiên thuộc tập L: $1,3,5,7$
Hai số tự nhiên không thuộc tập L: $2,4$
b. $L=\left\{n | \text{n là số tự nhiên lẻ}\right\}$
a) Ta có 29 là số nguyên tố
=> để n là số nguyên tố =>k=1
b) để n là hợp số =>k=2,3,4,5...(Vì nó có thể chia hết những số đã nhân)
c)ta có 1 va 0 là 2 số không phải là cả 2
=>k=1/29 hoặc k=0
10^k + 8^k + 6^8 là chẵn
9^k + 7^k + 5^k là lẻ
mà chẵn - lẻ là lẻ
=> hiệu trên là lẻ
tương tư thì câu 2 cũng giải như vậy
Để chọn5 n số sao cho tổng của 2 số phân biệt bất kì đều chia hết cho 6 thì tất cả số đã chọn phải chia hết cho 6
Số nhỏ nhất trong khoảng từ 1 đến 200 chia hết cho 6 là: 6
Số lớn nhất trong khoảng từ 1 đến 200 chia hết cho 6 là: 198
Số số tự nhiên từ 1 đến 200 chia hết cho 6 là:
(198 - 6) / 6 + 1 = 33 (số) => n = 33
Vậy..