Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)\(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)....\left(1+\dfrac{1}{2020}\right)\left(1+\dfrac{1}{2021}\right)\)
\(=\left(\dfrac{1.2}{1.2}+\dfrac{1}{2}\right)\left(\dfrac{1.3}{1.3}+\dfrac{1}{3}\right)...\left(\dfrac{1.2021}{1.2021}+\dfrac{1}{2021}\right)\)
\(=\dfrac{3}{1.2}\cdot\dfrac{4}{1.3}\cdot\cdot\cdot\cdot\dfrac{2022}{1.2021}\)
\(=\dfrac{3.4.5...2022}{\left(1.1.1....1\right)\left(2.3.4...2021\right)}\)
\(=\)\(\dfrac{3.4.5...2022}{2.3.4...2021}\)
\(=\dfrac{2022}{2}=1011\)
\(d\))\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)....\left(1-\dfrac{1}{199}\right)\left(1-\dfrac{1}{200}\right)\)
\(=\left(\dfrac{2}{1.2}-\dfrac{1}{1.2}\right)\left(\dfrac{3}{1.3}-\dfrac{1}{1.3}\right)....\left(\dfrac{200}{1.200}-\dfrac{1}{1.200}\right)\)
\(=\dfrac{1.2.3....199}{\left(1.1.1....1\right).\left(2.3.4....200\right)}\)
\(=\dfrac{1.2.3...199}{2.3.4...200}\)
Nếu mik làm sai mong bạn thông cảm
`4 / 7 xx [-5] / 6 xx 7 / 4 xx 12 / 5`
`= [ 4 xx (-5) xx 7 xx 12 ] / [ 7 xx 6 xx 4 xx 5 ]`
`= [ 4 xx (-5) xx 7 xx 6 xx 2 ] / [ 7 xx 6 xx 4 xx 5 ]`
`= -2`
4/7 × -5/7 × 7/4 ×12/5
=> -10/21 × 42/10
=> -420/210
=> -42/21
Đáp số: -42/21
\(A=\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{8}+...+\dfrac{10}{2^{10}}\)
\(2A=\dfrac{1}{1}+\dfrac{2}{2}+\dfrac{3}{4}+...+\dfrac{10}{2^9}\)
\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{4}+...+\dfrac{10}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{2}{4}+...+\dfrac{10}{2^{10}}\right)\)
\(A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2^9}-\dfrac{10}{2^{10}}\)
\(B=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2^9}\)
\(2B=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\)
\(2B-B=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2^9}\right)\)
\(B=2-\dfrac{1}{2^9}\)
Suy ra \(A=B-\dfrac{10}{2^{10}}=2-\dfrac{1}{2^9}-\dfrac{10}{2^{10}}=\dfrac{509}{256}\)
Answer:
\(\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{8}+...+\dfrac{10}{2^{10}}\)
\(=\left(\dfrac{2}{2^0}-\dfrac{3}{2^1}\right)+\left(\dfrac{3}{2^1}-\dfrac{4}{2^2}\right)+\left(\dfrac{4}{2^2}+\dfrac{5}{2^3}\right)+...+\left(\dfrac{11}{2^9}-\dfrac{12}{2^{10}}\right)\)
\(=2-\dfrac{12}{2^{10}}\)
\(=2-\dfrac{3}{256}\)
\(=\dfrac{512}{256}-\dfrac{3}{256}\)
\(=\dfrac{509}{256}\)
*Để làm bài này dễ hơn, bạn áp dụng công thức sau:
\(\dfrac{n}{2^n}=\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\)
\(\Leftrightarrow14-\frac{72}{-\left(8+x\right)}=-23\)
\(\Leftrightarrow37+\frac{72}{8+x}=0\)
\(\Leftrightarrow37\left(8+x\right)+72=0\)
\(\Leftrightarrow296+37x+72=0\)
\(\Leftrightarrow37x=-368\Leftrightarrow x=-\frac{368}{37}\)
b) \(B=\frac{4}{1.6}+\frac{4}{6.11}+\frac{4}{11.16}+...+\frac{4}{96.101}\)
\(=\frac{4}{5}\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\right)\)
\(=\frac{4}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(=\frac{4}{5}\left(1-\frac{1}{101}\right)\)
\(=\frac{80}{101}\)