Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-\left(x^2-4x+4\right)-\left(y^2+4y+4\right)+10\\ A=-\left(x-2\right)^2-\left(y+2\right)^2+10\le10\\ A_{max}=10\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
Bài 2:
Hình 3:
Xét ΔABC có AD là phân giác
nên x/3,5=7,2/4,5
=>x/3,5=1,8
=>x=6,3
Hình 4:
Xet ΔABC có MN//BC
nên 6/3=4/x
=>4/x=2
=>x=2
Bài 5
a) Ta có:
AB/A'B' = 6/4 = 3/2
AC/A'C' = 9/6 = 3/2
BC/B'C' = 12/8 = 3/2
⇒AB/A'B' = AC/A'C' = BC/B'C' = 3/2
⇒∆ABC ∽ ∆A'B'C' (c-c-c)
b) Do ∆ABC ∽ ∆A'B'C' (c-c-c)
⇒∠A = ∠A' = 100⁰
∠B = ∠B' = 44⁰
⇒∠C = 180⁰ - (∠A + ∠B)
= 180⁰ - (100⁰ + 44⁰)
= 36⁰
c) Tỉ số chu vi của ∆ABC và ∆A'B'C' là:
(AB + AC + BC)/(A'B' + A'C' + B'C')
= (6 + 9 + 12)/(4 + 6 + 8)
= 27/18
= 3/2
Bài 8:
a) Ta có: AD+DB=AB(D nằm giữa A và B)
AE+EC=AC(E nằm giữa A và C)
mà DB=EC(gt)
và AB=AC(ΔABC cân tại A)
nên AD=AE
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AD=AE;AB=AC\right)\)
Do đó: DE//BC(Định lí Ta lét đảo)
c) Xét tứ giác BDEC có DE//BC(cmt)
nên BDEC là hình thang có hai đáy là DE và BC(Định nghĩa hình thang)
Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Bài 7:
a) Xét ΔADE vuông tại E và ΔBCF vuông tại F có
AD=BC(ABCD là hình thang cân)
\(\widehat{B}=\widehat{C}\)(ABCD là hình thang cân)
Do đó: ΔADE=ΔBCF(Cạnh huyền-góc nhọn)
Suy ra: DE=CF(Hai cạnh tương ứng)
\(\Leftrightarrow DE+EF=CF+FE\)
\(\Leftrightarrow DF=CE\)
b) Xét tứ giác ABFE có
AE//BF(gt)
AE=BF(ΔAED=ΔBFC)
Do đó: ABFE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AB=EF(Hai cạnh đối)
Bài 7:
\(a,A=\dfrac{2a+a-3}{a-3}\cdot\dfrac{\left(a-3\right)\left(a+3\right)}{3}=\dfrac{3\left(a-1\right)\left(a+3\right)}{3}=\left(a-1\right)\left(a+3\right)\\ b,B=\dfrac{b+3-6}{b+3}:\dfrac{b^2-9-b^2+10}{\left(b-3\right)\left(b+3\right)}\\ B=\dfrac{b-3}{b+3}\cdot\left(b-3\right)\left(b+3\right)=\left(b-3\right)^2\)
Bài 8:
\(a,M=\dfrac{4m^2-4mn+n^2}{m^2}:\dfrac{n-2m}{mn}=\dfrac{\left(n-2m\right)^2}{m^2}\cdot\dfrac{mn}{n-2m}=\dfrac{n\left(n-2m\right)}{m}\\ b,N=\dfrac{1}{3}+x:\dfrac{x+3-x}{x+3}=\dfrac{1}{3}+x\cdot\dfrac{x+3}{3}=\dfrac{1+x^2+3x}{3}\)
Bài 8:
b: \(N=\dfrac{1}{3}+\dfrac{x}{\dfrac{x+3-x}{x+3}}=\dfrac{1}{3}+\dfrac{x}{\dfrac{3}{x+3}}=\dfrac{1}{3}+\dfrac{x+3}{3x}=\dfrac{x+x+3}{3x}=\dfrac{2x+3}{3x}\)
4.2:
a: x^2-x+1=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>=3/4>0 với mọi x
=>x^2-x+1 ko có nghiệm
b: 3x-x^2-4
=-(x^2-3x+4)
=-(x^2-3x+9/4+7/4)
=-(x-3/2)^2-7/4<=-7/4<0 với mọi x
=>3x-x^2-4 ko có nghiệm
5:
a: x^2+y^2=25
x^2-y^2=7
=>x^2=(25+7)/2=16 và y^2=16-7=9
x^4+y^4=(x^2)^2+(y^2)^2
=16^2+9^2
=256+81
=337
b: x^2+y^2=(x+y)^2-2xy
=1^2-2*(-6)
=1+12=13
x^3+y^3=(x+y)^3-3xy(x+y)
=1^3-3*1*(-6)
=1+18=19
xét tứ giác AFCD có EA=EC;ED=EF nên tứ giác AFCD là hình bình hành