K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Hỏi đáp Toán
Hình chiếu của A'A lên mp(ABC) là đường thẳng AH.
Suy ra góc giữa đường thẳng AA' và mp(ABC) bằng góc giữa hai đường thẳng AA' và AH.
\(A'H\perp mp\left(ABC\right)\) suy ra \(\left(AA',AH\right)=\widehat{A'AH}=60^o\).
\(AH=AC.sin60^o=\dfrac{a\sqrt{3}}{2}\).
\(A'H=AH.tan60^o=\dfrac{3a}{2}\).
Thể tích hình trụ là: \(\dfrac{1}{3}.S_{\Delta ABC}.A'H=\dfrac{1}{3}.a.a.sin60^o.\dfrac{3}{2}a=\dfrac{\sqrt{3}}{4}a^3\).
Đáp án : D.

12 tháng 8 2017

ai giúp mk tl câu này vs mk xin cảm ơn banhqua

NV
5 tháng 1 2022

C là đáp án đúng

Câu 1 : Cho lăng trụ đứng ABC.A'B'C' có AB = AC = 2a , \(\widehat{BAC}=120^0\) . Biết thể tích lăng trụ đã cho bằng \(a^3\sqrt{3}\) . Tính góc giữa hai mặt phẳng (A'BC) và (ABC) A. 150 B. 300 C. 450 D. 600 Câu 2 : Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại A . Mặt phẳng (A'BC) chia lăng trụ thành hai phần . Tính thể tích V của khối đa diện có chưa đỉnh B' ; biết BC = A'A = a A. V = \(\frac{\sqrt{3}}{2}a^3\) B. V =...
Đọc tiếp

Câu 1 : Cho lăng trụ đứng ABC.A'B'C' có AB = AC = 2a , \(\widehat{BAC}=120^0\) . Biết thể tích lăng trụ đã cho bằng \(a^3\sqrt{3}\) . Tính góc giữa hai mặt phẳng (A'BC) và (ABC)

A. 150 B. 300 C. 450 D. 600

Câu 2 : Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại A . Mặt phẳng (A'BC) chia lăng trụ thành hai phần . Tính thể tích V của khối đa diện có chưa đỉnh B' ; biết BC = A'A = a

A. V = \(\frac{\sqrt{3}}{2}a^3\) B. V = \(\frac{1}{4}a^3\) C. V = \(\frac{\sqrt{3}}{2}a^3\) D. V = \(\frac{1}{6}a^3\)

Câu 3 : Cho lăng trụ đứng ABC.A'B'C' có đáy ABC vuông cân tại B , AB = \(a\sqrt{2}\) . Góc giữa A'B và mặt phẳng (ACC'A' ) bằng 300 . Tính thể tích khối lăng trụ ABC.A'B'C'

A. 2a3 B. \(2\sqrt{6}a^3\) C. \(\frac{2\sqrt{6}}{3}a^3\) D. \(\frac{2}{3}a^3\)

Câu 4 : Cho lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a . Gọi G là trọng tâm tam giác ABC . Mặt phẳng (A'B'G) chia lăng trụ thành 2 phần , tính thể tích phần chứa cạnh AB

A. \(\frac{5a^3\sqrt{3}}{108}\) B. \(\frac{a^3\sqrt{3}}{36}\) C. \(\frac{2a^3\sqrt{3}}{27}\) D. \(\frac{a^3\sqrt{3}}{4}\)

Câu 5 : Tính thể tích V của khối lăng trụ ABC.A'B'C' , tam giác ABC vuông tại B , hình chiếu vuông góc của A lên (ABC) là trung điểm AC . Biết AB = a , BC = \(a\sqrt{3}\) , \(\widehat{\left(A^'B,\left(ABC\right)\right)=45^0}\)

A. V = \(\frac{\sqrt{3}}{8}a^3\) B. V = \(\frac{\sqrt{3}}{4}a^3\) C. V = \(\frac{\sqrt{3}}{2}a^3\) D. V = \(\sqrt{3}a^3\)

4
NV
22 tháng 8 2020

4.

Qua G kẻ đường thẳng song song AB lần lượt cắt AC và BC tại M và N

\(\Rightarrow A'B'NM\) là thiết diện của (A'B'G) và lăng trụ

Theo Talet ta có \(\frac{CM}{AC}=\frac{CN}{BC}=\frac{2}{3}\Rightarrow CM=CN=\frac{2a}{3}\)

Kéo dài A'M, B'N, C'C đồng quy tại P (theo tính chất giao tuyến 3 mặt phẳng)

Do \(CN//B'C'\Rightarrow\frac{PC}{PC'}=\frac{CN}{B'C'}=\frac{2}{3}\Rightarrow\frac{PC}{PC+CC'}=\frac{2}{3}\)

\(\Rightarrow3PC=2\left(PC+a\right)\Rightarrow PC=2a\)

\(\Rightarrow PC'=3a\)

\(MN=\frac{2}{3}BC\Rightarrow S_{CMN}=\frac{4}{9}S_{ABC}=\frac{4}{9}.\frac{a^2\sqrt{3}}{4}=\frac{a^2\sqrt{3}}{9}\)

\(V_{P.A'B'C'}=\frac{1}{3}PC'.S_{A'B'C'}=\frac{1}{3}.3a.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{3}}{4}\)

\(V_{P.CMN}=\frac{1}{3}PC.S_{CMN}=\frac{1}{3}.2a.\frac{a^2\sqrt{3}}{9}=\frac{2a^3\sqrt{3}}{27}\)

\(\Rightarrow V_{CMN.A'B'C'}=\frac{a^3\sqrt{3}}{4}-\frac{2a^3\sqrt{3}}{27}=\frac{19a^3\sqrt{3}}{108}\)

\(\Rightarrow V_{MNABA'B'}=\frac{a^3\sqrt{3}}{4}-\frac{19a^3\sqrt{3}}{108}=\frac{2a^3\sqrt{3}}{27}\)

NV
22 tháng 8 2020

2.

Đề thiếu dữ kiện ko tính được, chỉ tính được trong trường hợp tam giác ABC là vuông cân.

3.

\(AC=BC=a\sqrt{2}\) ; \(AC=AB\sqrt{2}=2a\)

Gọi M là trung điểm AC \(\Rightarrow BM\perp AC\Rightarrow BM\perp\left(ACC'A'\right)\)

\(\Rightarrow\widehat{BA'M}\) là góc giữa A'B và (ACC'A')

\(\Rightarrow\widehat{BA'M}=30^0\)

\(BM=\frac{1}{2}AC=a\)

\(tan\widehat{BA'M}=\frac{BM}{A'M}\Rightarrow A'M=\frac{BM}{tan30^0}=a\sqrt{3}\)

\(A'A=\sqrt{A'M^2-AM^2}=a\sqrt{2}\)

\(V=\frac{1}{2}A'A.AB.BC=a^3\sqrt{2}\)

Ko đáp án nào đúng