Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
h: \(\dfrac{a}{a-b}=\dfrac{a}{a-b}\)
\(\dfrac{b}{b-a}=\dfrac{-b}{a-b}\)
\(x^2-x-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}A=3^4+2\cdot3^3+2\cdot3^2+2\cdot3+1=160\\A=\left(-2\right)^4+2\cdot\left(-2\right)^3+2\cdot\left(-2\right)^2+2\cdot\left(-2\right)+1=5\end{matrix}\right.\)
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999911111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111112222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222233333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444445555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555566666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888101010101010101010010101010100101010101001001010101010100101010101001010101010100101010101010010101010011001
a) Áp dụng Pi-ta-go ta có:
\(AB^2+AC^2=BC^2\Rightarrow AB=\sqrt{20^2-16^2}\Rightarrow AB=18\)
Vì CD=DB, CE=CA⇒DE là đường trung bình trong tam giác ABC
\(\Rightarrow DE=\dfrac{1}{2}AB=\dfrac{1}{2}.18=9\)
b) DE là đường trung bình trong tam giác ABC⇒DE//AB mà AB⊥AC⇒DE⊥AC
Vì AF=FB, CD=DB⇒DF là đường trung bình trong tam giác ABC⇒DF//AC mà AC⊥AB, DF⊥AB
Xét tứ giác AEDF có \(\widehat{DEF}=\widehat{AFD}=\widehat{EAF}\) \(\Rightarrow\)AEDF là hình chữ nhật
⇒AD=EF, ED=AF=FB
Ta có: DF⊥AB, AF=FB⇒DF là trung trực của AB⇒AD=DB=EF
Xét tứ giác EDBF có: ED=BF, EF=DB⇒EDBF là hình bình hành
Bài 5:
a: \(x\left(x-1\right)-x^2+4x=-3\)
\(\Leftrightarrow x^2-x-x^2+4x=-3\)
hay x=-1
i: \(x^2-9x+8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)
hay MN//BP và MN=BP
Xét tứ giác BMNP có
MN//BP
MN=BP
Do đó: BMNP là hình bình hành
a: \(A=\dfrac{2x^2+x^2-1-2x^2+2x+1}{x\left(x+1\right)}=\dfrac{x^2+2x}{x\left(x+1\right)}=\dfrac{x+2}{x+1}\)
b: Ta có: \(x^2-2x=0\)
=>x=2
Thay x=2 vào A, ta được:
\(A=\dfrac{2+2}{2+1}=\dfrac{4}{3}\)
(a)
\(A=\dfrac{2x}{x+1}+\dfrac{x-1}{x}-\dfrac{2x^2-2x-1}{x^2+x}\\ =\dfrac{2x}{x+1}+\dfrac{x-1}{x}-\dfrac{2x^2-2x-1}{x\left(x+1\right)}=\dfrac{2x^2}{x\left(x+1\right)}+\dfrac{x^2-1}{x\left(x+1\right)}-\dfrac{2x^2-2x-1}{x\left(x-1\right)}\)
\(=\dfrac{2x^2+x^2-1-2x^2+2x+1}{x\left(x+1\right)}=\dfrac{x^2+2x+1}{x\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)}=\dfrac{x+1}{x}\)
(b)
\(x^2-2x=0\\ x\left(x-2\right)=0\)
=>x=0 hoặc x=2 mà đk x khác 0 nên thay x=2 vào bt A , ta có:
\(\dfrac{x+1}{x}=\dfrac{2+1}{2}=\dfrac{3}{2}\)
\(a^2-b^2-c^2=\left(b+c\right)^2-b^2-c^2=2bc\)
\(\frac{a^2}{a^2-b^2-c^2}=\frac{a^2}{2bc}=\frac{a^3}{2abc}\)
Tương tự với \(\frac{b^2}{b^2-a^2-c^2}=\frac{b^3}{2abc},\frac{c^2}{c^2-b^2-a^2}=\frac{c^3}{2abc}\)
Suy ra \(A=\frac{a^3+b^3+c^3}{2abc}\)
Ta có: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)^3-3c\left(a+b\right)\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Suy ra \(a^3+b^3+c^3=3abc\)
Do đó \(A=\frac{3abc}{2abc}=\frac{3}{2}\).