Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn, ghét hình học phẳng:
Để ý rằng AB vuông góc (M) tại H nên AH, BH cũng là các tiếp tuyến của (M)
- Nối MA, MB
- \(\widehat{AMB}\) là góc nội tiếp chắn nửa đường tròn (O) nên suy ra...
- AH, AC là 2 tiếp tuyến \(\Rightarrow\widehat{AMC}=\widehat{AMH}\)
Tương tự: \(\widehat{BMD}=\widehat{BMH}\)
\(\Rightarrow\widehat{CMD}=2\left(\widehat{AMH}+\widehat{BMH}\right)\)
b. AC, AH, BD, BH là các tiếp tuyến nên \(\left\{{}\begin{matrix}AC=AH\\BD=BH\end{matrix}\right.\) \(\Rightarrow AC+BD=...\)
c.
AC song song BD (cùng vuông CD), O và M lần lượt là trung điểm AB, CD
\(\Rightarrow OM\) là đtb hình thang vuông ABDC \(\Rightarrow OM\) vuông CD
Hệ thức lượng tam giác vuông OMK: \(OM^2=OH.OK\)
Mà \(OM=\dfrac{AB}{2}\Rightarrow...\)
a: Xét (O) co
CM,CA là tiếp tuyên
=>CM=CA
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB
CD=CM+MD
=>CD=CA+BD
b: Xet ΔACN và ΔDBN có
góc NAC=góc NDB
góc ANC=góc DNB
=>ΔACN đồng dạng vơi ΔDBN
=>AC/BD=AN/DN
=>CN/MD=AN/ND
=>MN/AC
Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:
- MA là tia phân giác của góc HMC
Vậy C, M, D thẳng hàng.
a) Xét (O) có
CM là tiếp tuyến có M là tiếp điểm(gt)
CA là tiếp tuyến có A là tiếp điểm(gt)
Do đó: CM=CA(Tính chất hai tiếp tuyến cắt nhau)
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm(gt)
DB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: DB=DM(Tính chất hai tiếp tuyến cắt nhau)
Ta có: CD=CM+DM(M nằm giữa C và D)
mà CM=CA(cmt)
và DM=DB(cmt)
nên CD=CA+DB
a) Ta thấy do AC, AH là tiếp tuyến qua A của đường tròn tâm M nên theo tính chất hai tiếp tuyến cắt nhau suy ra \(\widehat{CMA}=\widehat{AMH}\)
Tương tự \(\widehat{DMB}=\widehat{HMB}\)
Mà do M thuộc đường tròn tâm O nên \(\widehat{AMB}=90^o\Rightarrow\widehat{AMH}+\widehat{HMB}=90^o\)
\(\Rightarrow\widehat{CMD}=2.90^o=180^o\) hay C, M, D thẳng hàng.
Khi đó ACDB là hình thang, có OA = OB, MC = MD nên OM là đường trung bình. Vậy OM// DB hay OM vuông góc với CD tại M.
Nói các khác, M, C, D thuộc tiếp tuyến của (O) tại M.
b) Ta thấy theo tính chất hai tiếp tuyến cắt nhau thì AC = AH, BD = BH nên AC + BD = AH + HB = AB = 2R (không đổi)
Ta thấy CD = 2MH
Xét tam giác vuông AMB, theo hệ thức lượng ta có: AH.HB = MH2
Vậy nên \(AC.BD=\left(\frac{CD}{2}\right)^2=\frac{CD^2}{4}\)
c) Xét tam giác KMO vuông tại M, áp dụng hệ thức lượng ta có: OH.OK = MO2
Mà OM = OA = OB nên OH.OK = OA2 = OB2.
EM CẦN GẤP CÂU b ẠAA