Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc+\left(a+b+c\right)-\left(ac+bc+ac\right)-1\)
\(\left\{{}\begin{matrix}abc=1\left(1\right)\\a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(2\right)\end{matrix}\right.\) lấy (2) nhân (1) \(\Rightarrow a+b+c>ab+bc+ac\Leftrightarrow\left(a+b+c\right)-\left(ab+bc+ac\right)>0\) (3)
Thay (1) vào A \(\Leftrightarrow A=a+b+c-\left(ac+bc+ac\right)\)
Từ (3) => A>0 => dpcm
a<=1 => a^2 <=1 => a^2 -1<=0
tương tự : b^2 -1 <=0 ; c^2 -1<=0
=> (a^2 - 1)(b^2 - 1)(c^2 -1) <=0
=> a^2b^2c^2 + a^2 +b^2 +c^2 -1 - a^2b^2 - b^2c^2 - c^2a^2 <=0
=> a^2 + b^2 + c^2 <= 1 + a^2b^2 + b^2c^2 + c^2a^2 - a^2b^2c^2
ta có:
b-1 <=0 => a^2b(b- 1) <= 0 => a^2b^2 <= a^2b
tương tự : b^2c^2 <= b^2c ; c^2a^2 <= c^2a
mà a^2b^2c^2 >=0 => -a^2b^2c^2 <=0
=> 1 + a^2b^2 + b^2c^2 + c^2a^2 - a^2b^2c^2 <= 1+(a^2)b+(b^2)c+(c^2)a - 0
=1+(a^2)b+(b^2)c+(c^2)a
=> đpcm
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
Vì x+y+z =1 nên \(x^3+y^3+x^3-3xyz=x^2+y^2+z^2-xy-yz-zx\)
\(=\dfrac{1}{2}\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]\)
\(=\dfrac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Vậy \(x^3+y^3+z^3-3xyz=\dfrac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\) (đpcm)
a. \(\dfrac{x-23}{24}+\dfrac{x-23}{25}=\dfrac{x-23}{26}+\dfrac{x-23}{27}\)
\(\Leftrightarrow\dfrac{x-23}{24}+\dfrac{x-23}{25}-\dfrac{x-23}{26}-\dfrac{x-23}{27}=0\)
\(\Leftrightarrow\left(x-23\right)\left(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\right)=0\)
\(\Leftrightarrow x=23\left(do\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\ne0\right)\)
Vậy S=\(\left\{23\right\}\)
a, Ta có \(\dfrac{x-23}{24}+\dfrac{x-23}{25}=\dfrac{x-23}{26}+\dfrac{x-23}{27}\)
<=>\(\left(x-23\right)\left(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\right)=0\Rightarrow x-23=0\Rightarrow x=23\)
b, tương tự
Ta có:\(\text{}\text{}\frac{x+1}{58}+\frac{x+2}{57}+\frac{x+3}{56}+\frac{x+69}{5}=-1\)
\(\Leftrightarrow(\frac{x+1}{58}+1)+\left(\frac{x+2}{57}+1\right)+\left(\frac{x+3}{56}+1\right)+\left(\frac{x+69}{5}-2\right)=0\)
\(\Leftrightarrow\frac{x+59}{58}+\frac{x+59}{57}+\frac{x+59}{56}+\frac{x+59}{5}=0\)
\(\Leftrightarrow\left(x+59\right)\left(\frac{1}{59}+\frac{1}{57}+\frac{1}{56}+\frac{1}{5}\right)=0\)
\(\Leftrightarrow x+59=0\left(do\frac{1}{58}+\frac{1}{57}+\frac{1}{56}+\frac{1}{5}\ne0\right)\)
\(\Leftrightarrow x=-59\)