K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
18 tháng 5 2021

\(f'\left(x\right)=3x^2-6x\)

Phương trình đường thẳng: 

\(y-y_0=f'\left(x_0\right)\left(x-x_0\right)\)

\(\Leftrightarrow y-f\left(-2\right)=f'\left(-2\right)\left[x-\left(-2\right)\right]\)

\(\Leftrightarrow y+19=24\left(x+2\right)\)

\(\Leftrightarrow y=24x+29\)

19 tháng 5 2021

<br class="Apple-interchange-newline"><div></div>ƒ '(x)=3x2−6x

Phương trình đường thẳng: 

y−y0=ƒ '(x0)(x−x0)

⇔y−ƒ (−2)=ƒ '(−2)[x−(−2)]

⇔y+19=24(x+2)

⇔y=24x+29

21 tháng 3 2022

Nhiều quá 20 câu lận

21 tháng 3 2022

Giúp mình 10 câu cũng đc ạ

15 tháng 1 2022

??? Câu hỏi đâu mà giúp

Chắc lỗi:)

a: AD vuông góc CD

SA vuông góc CD

=>CD vuông góc (SAD)

Kẻ AH vuông góc SD

=>CD vuông góc AH

mà SD vuông góc AH

nên AH vuông góc (CDS)

=>d(A;(SCD))=AH=căn (4a^2+16a^2/8a^2)=căn 10/2

Kẻ MP//AB//CD

=>AP/AD=AM/AC

=>AP/4a=1/4

=>AP=a

=>PD=3a

PQ vuông góc SD

PQ vuông góc CD

=>PQ vuông góc (SCD)

mà PM//(SCD)

nên d(P;(SCD))=PQ

Xét ΔADH có PQ/AH=PD/AD

\(\dfrac{PQ}{\sqrt{10}:2}=\dfrac{3a}{4a}=\dfrac{3}{4}\)

=>PQ=3 căn 10/8

=>d(M;(SCD))=PQ=3căn 10/8

Kẻ NG//AM

Kẻ GU vuông góc SD

=>d(G;(SCD))=GU

GU/AH=SG/SA=1/2

=>GU=căn 10/4

b: (SCD;ABCD))=(AD;SD)=góc ADH

AH=AD*cosADH

=>cosADH=căn 10/8

=>góc ADH=67 độ

(SBD;(ABCD))=góc SOA

SA=AO*tan SOA

=>tan SOA=2/5

=>góc SOA=22 độ

 

13 tháng 5 2021

Cảm ơn chị nhiều lắm ạ 

a: \(N\in SB\subset\left(SBC\right)\)

\(N\in\left(NAD\right)\)

Do đó: \(N\in\left(SBC\right)\cap\left(NAD\right)\)

Xét (SBC) và (NAD) có

\(N\in\left(SBC\right)\cap\left(NAD\right)\)

BC//AD

Do đó: (SBC) giao (NAD)=xy, xy đi qua N và xy//BC//AD

b: Trong mp(ABCD), Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\left(1\right)\)

\(S\in SA\subset\left(SAC\right)\)

\(S\in SB\subset\left(SBD\right)\)

Do đó: \(S\in\left(SAC\right)\cap\left(SBD\right)\left(2\right)\)

Từ (1) và (2) suy ra (SAC) giao (SBD)=SO

c: Chọn mp(SBC) có chứa NK

\(SC\subset\left(SBC\right)\)

\(SC\subset\left(SCA\right)\)

Do đó: \(\left(SBC\right)\cap\left(SCA\right)=SC\)

Gọi E là giao điểm của NK với SC

=>E là giao điểm của NK với mp(SAC)

d: Chọn mp(SBD) có chứa DN

Ta có: (SBD) giao (SAC)=SO(cmt)

nên ta sẽ gọi F là giao điểm của SO với DN

=>F là giao điểm của ND với mp(SAC)

e: Xét ΔSAB có

M,N lần lượt là trung điểm của SA,SB

=>MN là đường trung bình của ΔSAB

=>MN//AB và \(MN=\dfrac{AB}{2}\)

MN//AB

AB//CD

Do đó: MN//CD

Xét tứ giác MNCD có MN//CD

nên MNCD là hình thang

 

8 tháng 3 2023

Bài $3$ : 

Tìm SHTQ :

$u_{n+1} = 4u_n + 3 \to u_{n+1} + 1 = 4(u_n+1)$

$\to u_n + 1 = ... = 4^{n-1}(u_1+1) = 9.4^{n-1}$

$\to u_{n} = 9.4^{n-1} -1$

a)Thay $n=5$ vào ta được : $u_5 = 9.4^4-1 = 2303$, $u_8 = 9.4^7 - 1=147455$

b) Như trên

NV
23 tháng 4 2022

Trên thực tế điểm P nằm ở đâu trên SC đều không quan trọng

Ta có: \(\overrightarrow{AI}=\dfrac{1}{3}\overrightarrow{AB}\Rightarrow\dfrac{AI}{AB}=\dfrac{1}{3}\)

\(\overrightarrow{DJ}=\dfrac{2}{3}\overrightarrow{DA}\Rightarrow\overrightarrow{AJ}=\dfrac{1}{3}\overrightarrow{AD}\Rightarrow\dfrac{AJ}{AD}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{AI}{AB}=\dfrac{AJ}{AD}\Rightarrow IJ||BD\) (Talet đảo) (1)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp AP\) (2)

(1);(2) \(\Rightarrow IJ\perp AP\) hay góc giữa 2 đường thẳng bằng \(\dfrac{\pi}{2}\)

1:

(SAB), (SBC) vuông góc (BAC)

=>SB vuông góc (ABC)

AC vuông góc AB,SB

=>AC vuông góc (SAB)

=>AC vuông góc BH

mà SA vuông góc BH

nên BH vuông góc (SAC)

=>BH vuông góc SC

mà SC vuông góc BK

nên SC vuông góc (BHK)

c: (SH;(BHK))=góc SHK=(SA;BHK)

BC=BA/cos60=2a

SC=căn SB^2+BC^2=ăcn 5

SB^2=SK*SC

=>SK=a*căn 5/5

SA=căn SB^2+AB^2=a*căn 2

SB^2=SH*SA

=>SH=a*căn 2/2

sin SHK=căn 10/5

=>góc SHK=39 độ