Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AD vuông góc CD
SA vuông góc CD
=>CD vuông góc (SAD)
Kẻ AH vuông góc SD
=>CD vuông góc AH
mà SD vuông góc AH
nên AH vuông góc (CDS)
=>d(A;(SCD))=AH=căn (4a^2+16a^2/8a^2)=căn 10/2
Kẻ MP//AB//CD
=>AP/AD=AM/AC
=>AP/4a=1/4
=>AP=a
=>PD=3a
PQ vuông góc SD
PQ vuông góc CD
=>PQ vuông góc (SCD)
mà PM//(SCD)
nên d(P;(SCD))=PQ
Xét ΔADH có PQ/AH=PD/AD
\(\dfrac{PQ}{\sqrt{10}:2}=\dfrac{3a}{4a}=\dfrac{3}{4}\)
=>PQ=3 căn 10/8
=>d(M;(SCD))=PQ=3căn 10/8
Kẻ NG//AM
Kẻ GU vuông góc SD
=>d(G;(SCD))=GU
GU/AH=SG/SA=1/2
=>GU=căn 10/4
b: (SCD;ABCD))=(AD;SD)=góc ADH
AH=AD*cosADH
=>cosADH=căn 10/8
=>góc ADH=67 độ
(SBD;(ABCD))=góc SOA
SA=AO*tan SOA
=>tan SOA=2/5
=>góc SOA=22 độ
a: \(N\in SB\subset\left(SBC\right)\)
\(N\in\left(NAD\right)\)
Do đó: \(N\in\left(SBC\right)\cap\left(NAD\right)\)
Xét (SBC) và (NAD) có
\(N\in\left(SBC\right)\cap\left(NAD\right)\)
BC//AD
Do đó: (SBC) giao (NAD)=xy, xy đi qua N và xy//BC//AD
b: Trong mp(ABCD), Gọi O là giao điểm của AC và BD
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\left(1\right)\)
\(S\in SA\subset\left(SAC\right)\)
\(S\in SB\subset\left(SBD\right)\)
Do đó: \(S\in\left(SAC\right)\cap\left(SBD\right)\left(2\right)\)
Từ (1) và (2) suy ra (SAC) giao (SBD)=SO
c: Chọn mp(SBC) có chứa NK
\(SC\subset\left(SBC\right)\)
\(SC\subset\left(SCA\right)\)
Do đó: \(\left(SBC\right)\cap\left(SCA\right)=SC\)
Gọi E là giao điểm của NK với SC
=>E là giao điểm của NK với mp(SAC)
d: Chọn mp(SBD) có chứa DN
Ta có: (SBD) giao (SAC)=SO(cmt)
nên ta sẽ gọi F là giao điểm của SO với DN
=>F là giao điểm của ND với mp(SAC)
e: Xét ΔSAB có
M,N lần lượt là trung điểm của SA,SB
=>MN là đường trung bình của ΔSAB
=>MN//AB và \(MN=\dfrac{AB}{2}\)
MN//AB
AB//CD
Do đó: MN//CD
Xét tứ giác MNCD có MN//CD
nên MNCD là hình thang
Trên thực tế điểm P nằm ở đâu trên SC đều không quan trọng
Ta có: \(\overrightarrow{AI}=\dfrac{1}{3}\overrightarrow{AB}\Rightarrow\dfrac{AI}{AB}=\dfrac{1}{3}\)
\(\overrightarrow{DJ}=\dfrac{2}{3}\overrightarrow{DA}\Rightarrow\overrightarrow{AJ}=\dfrac{1}{3}\overrightarrow{AD}\Rightarrow\dfrac{AJ}{AD}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{AI}{AB}=\dfrac{AJ}{AD}\Rightarrow IJ||BD\) (Talet đảo) (1)
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp AP\) (2)
(1);(2) \(\Rightarrow IJ\perp AP\) hay góc giữa 2 đường thẳng bằng \(\dfrac{\pi}{2}\)
1:
(SAB), (SBC) vuông góc (BAC)
=>SB vuông góc (ABC)
AC vuông góc AB,SB
=>AC vuông góc (SAB)
=>AC vuông góc BH
mà SA vuông góc BH
nên BH vuông góc (SAC)
=>BH vuông góc SC
mà SC vuông góc BK
nên SC vuông góc (BHK)
c: (SH;(BHK))=góc SHK=(SA;BHK)
BC=BA/cos60=2a
SC=căn SB^2+BC^2=ăcn 5
SB^2=SK*SC
=>SK=a*căn 5/5
SA=căn SB^2+AB^2=a*căn 2
SB^2=SH*SA
=>SH=a*căn 2/2
sin SHK=căn 10/5
=>góc SHK=39 độ
\(f'\left(x\right)=3x^2-6x\)
Phương trình đường thẳng:
\(y-y_0=f'\left(x_0\right)\left(x-x_0\right)\)
\(\Leftrightarrow y-f\left(-2\right)=f'\left(-2\right)\left[x-\left(-2\right)\right]\)
\(\Leftrightarrow y+19=24\left(x+2\right)\)
\(\Leftrightarrow y=24x+29\)
<br class="Apple-interchange-newline"><div></div>ƒ '(x)=3x2−6x
Phương trình đường thẳng:
y−y0=ƒ '(x0)(x−x0)
⇔y−ƒ (−2)=ƒ '(−2)[x−(−2)]
⇔y+19=24(x+2)
⇔y=24x+29