K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

nhìn không rõ,chữ đẹp lên

18 tháng 10 2021

cho chóp tam giácA.ABC có đáy là tam giác vuông tại B cạnh bên sa vuông với đáy, có SA = 2a, AB = a, BC= a\(\sqrt{3}\), gọi M là điểm trên cạnh SB sao cho 2SM=MB và N là trung điểm cạnh SC. tính thể tích của khối chóp A.MNCB

NV
17 tháng 8 2021

\(log_{\sqrt{x}}y=\dfrac{2y}{5}\Rightarrow2log_xy=\dfrac{2y}{5}\) \(\Rightarrow log_xy=\dfrac{y}{5}\)

\(log_{\sqrt[3]{5}}x=\dfrac{15}{y}\Rightarrow3log_5x=\dfrac{15}{y}\Rightarrow log_5x=\dfrac{5}{y}\)

\(\Rightarrow log_xy=\dfrac{1}{log_5x}=log_x5\Rightarrow y=5\)

\(\Rightarrow log_5x=\dfrac{5}{5}=1\Rightarrow x=5\)

\(\Rightarrow x^2+y^2=25+25=50\)

Chọn B

DD
2 tháng 1 2023

\(f\left(x\right)=ax^3+bx^2+cx+d\)

Dựa vào đồ thị ta có: \(f\left(-2\right)=2,f\left(-1\right)=-1,f\left(0\right)=0,f\left(1\right)=-1\)

Từ đó suy ra \(f\left(x\right)=-x^3-x^2+x\).

\(g\left(x\right)=\left|f^3\left(x\right)-3f\left(x\right)\right|\)

\(h\left(x\right)=f^3\left(x\right)-3f\left(x\right)\)

\(h'\left(x\right)=3f'\left(x\right)f^2\left(x\right)-3f'\left(x\right)\)

\(h'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}f'\left(x\right)=0\\f^2\left(x\right)=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}f'\left(x\right)=0\\f\left(x\right)=1\\f\left(x\right)=-1\end{matrix}\right.\)

\(f'\left(x\right)=0\) có \(2\) nghiệm đơn

\(f\left(x\right)=1\) có \(1\) nghiệm đơn

\(f\left(x\right)=-1\) có \(1\) nghiệm đơn, \(1\) nghiệm kép. 

Kết hợp lại ta được phương trình \(h'\left(x\right)=0\) có \(4\) nghiệm bội lẻ (do nghiệm \(x=-1\) vừa là nghiệm kép của \(f\left(x\right)=-1\) vừa là nghiệm đơn của \(f'\left(x\right)=0\)).

mà \(limh\left(x\right)=-\infty\) do đó \(g\left(x\right)=\left|h\left(x\right)\right|\) có \(3\) điểm cực đại, \(4\) điểm cực tiểu suy ra \(T=n^m=4^3=64\).

Chọn A.

NV
30 tháng 1 2022

Thiếu hình vẽ đồ thị \(y=f'\left(x\right)\) rồi em

30 tháng 1 2022

Trong câu ko có đồ thị hàm số y= f'(x) ạ. Chỉ có câu hỏi thui à thầy 

10 tháng 2 2022

Ta có: \(\int\dfrac{xdx}{x^2+3}\)

Đặt \(u=x^2+3\left(u>0\right)\) 

Có \(du=2xdx\)

\(\Rightarrow\int\dfrac{xdx}{x^2+3}=\)\(\int\dfrac{du}{2u}=\dfrac{1}{2}ln\left(u\right)=\dfrac{1}{2}ln\left(x^2+3\right)\)

10 tháng 2 2022

Cảm ơn bạn nhiều 🥰

c: \(12\cdot3^x+3\cdot15^x-5^{x+1}=20\)

=>\(12\cdot3^x+3\cdot3^x\cdot5^x-5^x\cdot5-20=0\)

=>\(3^x\cdot3\left(5^x+4\right)-5\left(5^x+4\right)=0\)

=>\(\left(3^{x+1}-5\right)\left(5^x+4\right)=0\)

=>\(3^{x+1}-5=0\)

=>\(3^{x+1}=5\)

=>\(x+1=log_35\)

=>\(x=log_35-1\)

f: \(25^x-2\left(3-x\right)\cdot5^x+2x-7=0\)

=>\(\left(5^x\right)^2+5^x\cdot\left(2x-6\right)+2x-7=0\)

=>\(\left(5^x\right)^2+5^x\left(2x-7\right)+5^x+2x-7=0\)

=>\(5^x\left(5^x+2x-7\right)+\left(5^x+2x-7\right)=0\)

=>\(\left(5^x+1\right)\left(5^x+2x-7\right)=0\)

=>\(5^x+2x-7=0\)

Đặt \(A\left(x\right)=5^x+2x-7\)

=>\(A'\left(x\right)=5^x\cdot ln5+2>0\forall x\)

=>A(x) đồng biến trên R

=>A(x)=0 khi và chỉ khi x=1

i: \(9^x+2\left(x-2\right)\cdot3^x+2x-5=0\)

=>\(\left(3^x\right)^2+3^x\left(2x-5\right)+3^x+2x-5=0\)

=>\(\left(3^x+2x-5\right)\left(3^x+1\right)=0\)

=>\(3^x+2x-5=0\)

Đặt \(B\left(x\right)=3^x+2x-5\)

=>\(B'\left(x\right)=3^x\cdot ln3+2>0\)

=>B(x) luôn đồng biến trên R

=>B(x)=0 khi và chỉ khi x=1

NV
1 tháng 11 2021

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên

16 tháng 2 2022

B nhé

NV
16 tháng 2 2022

\(g'\left(x\right)=3.f'\left(3x\right)+9=0\Rightarrow f'\left(3x\right)=-3\Rightarrow\left[{}\begin{matrix}3x=-1\\3x=0\\3x=1\\3x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=0\\x=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\) Trên \(\left[-\dfrac{1}{3};\dfrac{1}{3}\right]\) hàm \(g\left(x\right)\) đạt cực đại tại \(x=0\) và cực tiểu tại \(x=-\dfrac{1}{3};\dfrac{1}{3}\)

\(\Rightarrow g\left(x\right)_{max}=g\left(0\right)=f\left(0\right)\)