Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a: Xét tứ giác MBOC có \(\widehat{OBM}+\widehat{OCM}=90^0+90^0=180^0\)
nên MBOC là tứ giác nội tiếp
=>M,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
MB,MC là các tiếp tuyến
Do đó: MB=MC
=>M nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OM là đường trung trực của BC
=>OM\(\perp\)BC tại I và I là trung điểm của BC
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD tại C
Ta có: BC\(\perp\)CD
BC\(\perp\)OM
Do đó: CD//OM
c: Xét (O) có
ΔBHD nội tiếp
BD là đường kính
Do đó: ΔBHD vuông tại H
=>BH\(\perp\)HD tại H
=>BH\(\perp\)DM tại H
Xét ΔBDM vuông tại B có BH là đường cao
nên \(MH\cdot MD=MB^2\left(3\right)\)
Xét ΔMBO vuông tại B có BI là đường cao
nên \(MI\cdot MO=MB^2\left(4\right)\)
Từ (3) và (4) suy ra \(MH\cdot MD=MI\cdot MO\)
=>\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)
Xét ΔMHI và ΔMOD có
\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)
góc HMI chung
Do đó: ΔMHI đồng dạng với ΔMOD
=>\(\widehat{MIH}=\widehat{MDO}=\widehat{ODH}\)
mà \(\widehat{ODH}=\widehat{OHD}\)(ΔOHD cân tại O)
nên \(\widehat{MIH}=\widehat{OHD}\)
a/
Ta có
\(\widehat{OAM}=\widehat{OBM}=90^o\)
=> A và B cùng nhìn OM dưới 1 góc \(90^o\) => A và B thuộc đường tròn đường kính OM => B; O; A; M cùng thuộc 1 đường tròn
b/
Ta có
\(\widehat{BAC}=90^o\) (góc nt chắn nửa đường tròn)
\(\Rightarrow AC\perp AB\)
Ta có
\(OM\perp AB\) (2 tt cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm đường tròn vuông góc với dây cung nối 2 tiếp điểm)
=> AC//OM
Xét tg vuông AMO có
\(MO\perp AB\left(cmt\right)\)
\(\Rightarrow MA^2=MH.MO\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích của hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông BMO có
\(MO\perp AB\left(cmt\right)\)
\(\Rightarrow OB^2=OH.MO\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích của hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Mà OB=OC (bán kính (O))
\(\Rightarrow OC^2=OH.MO\)
c/
Ta có
MA=MB (Hai tt cùng xp từ 1 điểm ngoài hình tròn thì khoảng cách từ điểm đó đến 2 tiếp điểm = nhau) (1)
AH=BH (2 tt cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối 2 tiếp điểm)
\(\Rightarrow AH=BH=\dfrac{AB}{2}\) (2)
Xét tg vuông AHO và tg vuông AMO có
\(\widehat{OAH}=\widehat{AMO}\) (cùng phụ với \(\widehat{AOM}\))
=> tg AHO đồng dạng với tg AMO (g.g.g)
\(\Rightarrow\dfrac{AH}{MA}=\dfrac{OA}{MO}\) (3)
Thay (1) và (2) vờ (3)
\(\Rightarrow\dfrac{\dfrac{AB}{2}}{MB}=\dfrac{OA}{MO}\Rightarrow\dfrac{AB}{2MB}=\dfrac{OA}{MO}\Rightarrow\dfrac{AB.MO}{2}-MB.OA\)
Gọi I' là giao của MO với (O), Nối AI'
Ta có
sđ cung AI' = sđ cung BI' (2 tt cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm đường tròn chia đôi dây cung bị chặn bởi 2 tiếp điểm)
\(sđ\widehat{MAI'}=\dfrac{1}{2}sđcungAI'\) (góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{BAI'}=\dfrac{1}{2}sđcungBI'\) (góc nội tiếp đường tròn)
\(\Rightarrow\widehat{MAI'}=\widehat{BAI'}\) => AI' là phân giác của \(\widehat{BAM}\) Mà AI cũng là phân giác của \(\widehat{BAM}\)
Ta có I và I' cùng thuộc MO => \(I\equiv I'\Rightarrow I\in\left(O\right)\) cố định khi M thay đổi