Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì MA = MC ( tc tiếp tuyến )
OA = OC = R
Vậy OM là đường trung trực AC hay MO vuông AC
Ta có : ^ACB = 900 ( góc nội tiếp chắn nửa đường tròn )
hay AC vuông BC
lại có AC vuông MO ( cmt )
=> OM // BC ( tc vuông góc đến song song )
b, Vì MA là tiếp tuyến với A là tiếp điểm suy ra ^MAO = 900
Áp dụng định lí Pytago tam giác MAO vuông tại A
\(MO=\sqrt{AM^2+AO^2}=\sqrt{64+36}=10\)cm
Gọi MO giao AC = T
Áp dụng hệ thức : \(AT.MO=AM.AO\Rightarrow AT=\frac{AM.AO}{MO}=\frac{48}{10}=\frac{24}{5}\)cm
Vì MO là đường trung trực nên AT = TC
=> AC = 2AT = 24/5 . 2 = 48/5 cm
nếu rồi thi ta có
tam giac OAC can vi OC=OA
có OM phân giác nên OM vuong goc AC
tam giac ABC có AB duong kinh và C thuoc {O} nen
tam giac ABC vuong
AB vuong goc AC
OM vuong goc AC
nen BC song song OM
a) \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat{ACB}=90^o\). Vậy tam giác ABC vuông tại C.
Xét tam giác vuông PAB có đường cao AC, áo dụng hệ thức lượng trong tam giác ta có:
\(PA^2=PC.PB\)
b) Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có PA = PM
Lại có OA = OM nên PO là trung trực của AM.
c) Ta có \(\widehat{CBA}=30^o\Rightarrow\widehat{CAB}=60^o\) hay tam giác CAO đều. Suy ra AC = R
Xét tam giác vuông PAB có đường cao AC, áo dụng hệ thức lượng trong tam giác ta có:
\(\frac{1}{AC^2}=\frac{1}{AP^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{R^2}=\frac{1}{AP^2}+\frac{1}{4R^2}\)
\(\Rightarrow AP=\frac{2R}{\sqrt{3}}\)
\(\Rightarrow PO=\sqrt{PA^2+AO^2}=\frac{\sqrt{21}R}{3}\)
Xét tam giác vuông PAO, đường cao AN, áo dụng hệ thức lượng ta có:
\(\frac{1}{AN^2}=\frac{1}{PA^2}+\frac{1}{AO^2}\Rightarrow AN=\frac{2\sqrt{7}R}{7}\)
\(\Rightarrow AM=2AN=\frac{4\sqrt{7}}{7}R\)
d) Kéo dài MB cắt AP tại E.
Ta thấy ngay tam giác EMA vuông có PM = PA nên PA = PE
Do MH // AE nên áo dụng định lý Ta let ta có:
\(\frac{HI}{AP}=\frac{IB}{PB}=\frac{MI}{EP}\)
Do AP = EP nên MI = HI
Ta cũng có N là trung điểm AM nên NI là đường trung bình tam giác AMH.
\(\Rightarrow NI=\frac{AH}{2}\)
Xét tam giác vuông AMB, đường cao MH, áp dụng hệ thức lượng ta có:
\(AH.AB=AM^2\Rightarrow AH=\frac{8}{7}R\)
\(\Rightarrow NI=\frac{4}{7}R\)
a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.
Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:
\(BC.BM=AB^2=4R^2\)
b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA
Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)
\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)
Hay IC là tiếp tuyến tại C của nửa đường tròn.
c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:
\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)
Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.
Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\) (1)
Xét tam giác vuông MAB, theo Pi-ta-go ta có:
\(MB^2=MA^2+AB^2=MA^2+4R^2\) (2)
Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)
d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)
Tương tự \(\widehat{CEO}=90^o\)
Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.
Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.
Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.
Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.
Vậy đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.