Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-2xy^2\left(\frac{1}{4}x^3y^4\right)=-\frac{1}{2}xy^2x^3y^4=-\frac{1}{2}x^4y^6\)
Hệ số : -1/2
Biến : x^4y^6
Bậc : 10
a, <=> 2,5 : 4x = 2,5
<=> 4x = 2,5 : 2,5 = 1
<=> x=1 : 4 = 1/4
b, <=> 1/5.x:3 = 8/3
<=> 1/5.x = 8/3 . 3 = 8
<=> x = 8 : 1/5 = 40
c)3(2x-1)-5(x-3)+6(3x-4)=24
<=>6x-3-5x-15+18x-24=24
<=>19x-12=24
<=>19x=36
<=>x=\(\frac{36}{19}\)
d)2x(5-3x)+2x(3x-5)-3(x-7)=3
<=>10x-6x2+6x2-10x-3x-21=3
<=>-3(x-7)=3
<=>21-3x=3
<=>-3x=-18
<=>x=6
lên mạng xem iknguyen pham lan
Bn thi Văn zà Anh chưa? Mk thi lúc chiều rùi...
\(M=\left(5x-3y+3xy+x^2y^2\right)-\left(\dfrac{1}{2}x+2xy-y+4x^2y^2\right)\)
\(=5x-3y+3xy+x^2y^2-\dfrac{1}{2}x-2xy+y-4x^2y^2\)
\(=\left(5x-\dfrac{1}{2}x\right)+\left(y-3y\right)+\left(3xy-2xy\right)+\left(x^2y^2-4x^2y^2\right)\) \(=4,5x-2y+xy-3x^2y^2\)
Thay \(x=1;y=-\dfrac{1}{2}\) vào ta có:
\(4,5x-2y+xy-3x^2y^2\)
\(=4,5.1-2.\left(-\dfrac{1}{2}\right)+1.\left(-\dfrac{1}{2}\right)-3.1^2.\left(-\dfrac{1}{2}\right)^2\)
\(=4,5+1-\dfrac{1}{2}-\dfrac{3}{4}\) \(=\dfrac{17}{4}\)
\(\left|x+\frac{4}{15}\right|-\left|-3.75\right|=-\left|-2,15\right|\)
\(\Rightarrow\left|x+\frac{4}{15}\right|-\frac{15}{4}=-\frac{43}{20}\)
\(\Rightarrow\left|x+\frac{4}{15}\right|=-\frac{43}{20}+\frac{15}{4}\)
\(\Rightarrow\left|x+\frac{4}{15}\right|=\frac{8}{5}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{4}{15}=\frac{8}{5}\\x+\frac{4}{15}=-\frac{8}{5}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{28}{15}\end{cases}}\)
\(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
\(\left|x+\frac{4}{15}\right|-3,75=-2,15\)
\(\left|x+\frac{4}{15}\right|=1,6\)
=> \(x+\frac{4}{15}=1,6\) hoặc \(x+\frac{4}{15}=-1,6\)
=> \(x=\frac{4}{3}\) hoặc \(x=\frac{-28}{15}\)
Vậy..
áp dụng tính chất dãy tỉ số bằng nhau ta có
a/b=b/c=c/a=(a+b+c)/(b+c+a)=1 ( Vì a+b+c khác 0)
=> a=b=c=2006
a. Giá trị nhỏ nhất của A=\(\sqrt{2}+\frac{3}{11}\)
không có giá trị lớn nhất
b. Giá trị lớn nhất của B là \(\frac{5}{7}\) khi x=5 không có GTLN
a: \(\dfrac{8}{9}=1-\dfrac{1}{9}\)
\(\dfrac{108}{109}=1-\dfrac{1}{109}\)
Vì 9<109 nên \(\dfrac{1}{9}>\dfrac{1}{109}\)
=>\(-\dfrac{1}{9}< -\dfrac{1}{109}\)
=>\(-\dfrac{1}{9}+1< -\dfrac{1}{109}+1\)
=>\(\dfrac{8}{9}< \dfrac{108}{109}\)
b: \(\dfrac{97}{100}=0,97;\dfrac{98}{99}=0,\left(98\right)\)
mà 0,97<0,(98)
nên \(\dfrac{97}{100}< \dfrac{98}{99}\)
c: \(\dfrac{19}{18}=1+\dfrac{1}{18}\)
\(\dfrac{2021}{2020}=1+\dfrac{1}{2020}\)
Vì 18<2020 nên \(\dfrac{1}{18}>\dfrac{1}{2020}\)
=>\(1+\dfrac{1}{18}>1+\dfrac{1}{2020}\)
=>\(\dfrac{19}{18}>\dfrac{2021}{2020}\)
d: \(\dfrac{131}{171}=\dfrac{130+1}{170+1}>\dfrac{130}{170}=\dfrac{13}{17}\)