Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+y=3\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+2y=6\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Thay x=1 và y=1 vào (d), ta được:
\(2m-1+1=5m\)
hay m=0
Tọa độ giao điểm A,B là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x^2=2x+3\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)\left(x+1\right)=0\\y=2x+3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(3;9\right);\left(-1;1\right)\right\}\)
vậy: A(3;9); B(-1;1)
b: Tọa độ của F là:
\(\left\{{}\begin{matrix}x+2=-\dfrac{1}{2}x+2\\y=x+2\end{matrix}\right.\Leftrightarrow F\left(0;2\right)\)
\(a,m=-\dfrac{3}{2}\Leftrightarrow x^2-2\cdot\dfrac{1}{2}\cdot x-\dfrac{3}{2}+1=0\\ \Leftrightarrow x^2-x-\dfrac{1}{2}=0\\ \Leftrightarrow2x^2-2x-1=0\\ \Delta'=1+2=3\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{3}}{2}\\x=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\\ b,\text{PT có }n_o\Leftrightarrow\Delta'=\left(m+2\right)^2-\left(m+1\right)\ge0\\ \Leftrightarrow m^2+3m+3\ge0\\ \Leftrightarrow\left(m+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge0\left(\text{luôn đúng}\right)\)
Vậy PT có nghiệm với mọi m
\(c,\text{Viét: }\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\\ x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^3\\ \Leftrightarrow\left(x_1+x_2\right)-4x_1x_2=m^3\\ \Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^3\\ \Leftrightarrow m^3+2m=0\\ \Leftrightarrow m\left(m^2+2\right)=0\Leftrightarrow m=0\)
\(a,m=1\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\\dfrac{x}{2}-\dfrac{y}{3}=334\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1+y\\\dfrac{1+y}{2}-\dfrac{y}{3}=334\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1+y\\3y+3-2y=2004\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1+y\\y=2001\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2002\\y=2001\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{3}=334\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}mx-y=1\\3x-2y=2004\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}mx-y=1\\y=\dfrac{3x-2004}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}mx-\dfrac{3x-2004}{2}=1\\y=\dfrac{3x-2004}{2}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2mx-3x=-2002\\y=\dfrac{3x-2004}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-3\right)=-2002\\y=\dfrac{3x-2004}{2}\end{matrix}\right.\)
Để hpt vô nghiệm thì \(x\left(2m-3\right)=-2002\) vô nghiệm
\(\Leftrightarrow2m-3=0\Leftrightarrow m=\dfrac{3}{2}\)
\(a,\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m-2\right)\ge0\\ \Leftrightarrow m^2-3m+3\ge0\\ \Leftrightarrow\left(m-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge0\left(\text{luôn đúng}\right)\)
Vậy PT có 2 nghiệm pb với mọi m
\(b,\Leftrightarrow0< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(m-1\right)>0\\m-2>0\end{matrix}\right.\Leftrightarrow m>2\\ c,\text{Thay }x=2\Leftrightarrow4-4\left(m-1\right)+m-2=0\\ \Leftrightarrow m=2\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ d,\text{Viét: }\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-2\end{matrix}\right.\\ x_1^2+x_2^2=8\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\\ \Leftrightarrow4\left(m-1\right)^2-2\left(m-2\right)=8\\ \Leftrightarrow4m^2-10m=0\\ \Leftrightarrow m\left(2m-5\right)=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
hay \(\widehat{BOC}=135^0\)