Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.19:
d: A=[-3;3]
B(-4;1)
\(A\cap B\)=[-3;1)
\(A\cup B=\)(-4;3]
Tiền lời khi bán 1 đôi giày: \(x-30\) (đô la)
Số tiền lời mà cửa hàng thu được:
\(\left(x-30\right)\left(80-x\right)=-x^2+110x-2400=-\left(x-55\right)^2+625\le625\)
Dấu "=" xảy ra khi \(x-55=0\Leftrightarrow x=55\)
Vậy cửa hàng bán với giá 55 đô la 1 đôi giày sẽ thu được lời lớn nhất
a. BPT đã cho vô nghiệm khi:
\(f\left(x\right)\ge0\) nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m+2\right)^2-\left(3m^2+5m-8\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow-2m^2-m+12\le0\) \(\Rightarrow\left[{}\begin{matrix}m\ge\dfrac{-1+\sqrt{97}}{4}\\m\le\dfrac{-1-\sqrt{97}}{4}\end{matrix}\right.\)
b.
\(f\left(x\right)=0\) có 2 nghiệm pb
\(\Leftrightarrow\Delta'=-2m^2-m+12>0\)
\(\Leftrightarrow\dfrac{-1-\sqrt{97}}{4}< m< \dfrac{-1+\sqrt{97}}{4}\)
Bài 6:
Vì \(m^2+1>0\) nên hs nghịch biến trong khoảng \(\left(-\infty;2m\right)\)
Bài 3:
6: \(x< 0\) nên \(y=\sqrt[3]{x}\) nghịch biến
Câu 5:
\(\Leftrightarrow-x^2+7x-9+2x-9=0\)
\(\Leftrightarrow x^2-9x+18=0\)
=>x=3
=>Chọn A
3) Ta có \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
\(=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Ta dễ chứng minh được rằng \(\frac{a}{c}+\frac{c}{a}\ge2\)
Thật vậy \(\frac{a}{c}+\frac{c}{a}\ge2\)
<=> \(\frac{a^2+c^2}{ac}\ge2\)
<=> a2 + c2 \(\ge\)2ac
<=> (a - c)2 \(\ge0\)(đúng với a,c > 0)
Tương tự \(\hept{\begin{cases}\frac{b}{a}+\frac{a}{b}\ge2\\\frac{b}{c}+\frac{c}{b}\ge2\end{cases}}\)
Khi đó \(\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge2+2+2=6\)(đpcm)