K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 10 2021

3.

\(A\cap\varnothing=\varnothing\) nên C sai

4.

Tập A có 3 phần tử nên có \(2^3=8\) tập con

NV
21 tháng 11 2021

Do E thuộc Ox nên tọa độ có dạng: \(E\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{EA}=\left(-1-x;2\right)\\\overrightarrow{EB}=\left(2-x;1\right)\\\overrightarrow{EC}=\left(6-x;-5\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}=\left(7-3x;-2\right)\)

\(\Rightarrow\left|\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}\right|=\sqrt{\left(7-3x\right)^2+\left(-2\right)^2}\ge\sqrt{\left(-2\right)^2}=2\)

Dấu "=" xảy ra khi \(7-3x=0\Rightarrow x=\dfrac{7}{3}\)

\(\Rightarrow E\left(\dfrac{7}{3};0\right)\)

6 tháng 9 2021

Đặt y = f(x) = - 2x2 có đồ thị (C)

và y = g(x) = - 2x2 - 6x + 3 có đồ thị (C')

Ta có :

g(x) = - 2x2 - 6x + 3 

= - 2\(\left(x^2+3x-\dfrac{3}{2}\right)\)

= - 2\(\left(x+\dfrac{3}{2}\right)^2\) + \(\dfrac{15}{2}\)

\(f\left(x+\dfrac{3}{2}\right)+\dfrac{15}{2}\)

Vậy tịnh tiến (C) sang trái \(\dfrac{3}{2}\) đơn vị rồi kéo (C) lên trên \(\dfrac{15}{4}\) đơn vị ta được (C')

 

Câu 9: A

Câu 10: A

Câu 11: A

NV
19 tháng 8 2021

5.

Do M là trung điểm AB \(\Rightarrow\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{AC}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=-2\overrightarrow{MA}\)

\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\)

\(\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

6.

Do ABCD là hbh \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

Lại có E là trung điểm CD \(\Rightarrow\overrightarrow{DE}=\dfrac{1}{2}\overrightarrow{DC}\)

Do đó:

\(\overrightarrow{AE}=\overrightarrow{AD}+\overrightarrow{DE}=\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{DC}=\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AB}=\overrightarrow{u}+\dfrac{1}{2}\overrightarrow{v}\)