K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
cos2x.tan6x=sin10x
ĐK : cos6x khác 0
cos2x.sin6x/cos6x=sin10x
sin6xcos2x=sin10xcos6x
1/2(sin8x+sin4x)=1/2(sin16x+sin4x)
sin8x+sin4x=sin16x+sin4x
sin8x=sin16x
sin16x=sin8x
\(\orbr{\begin{cases}16x=8x+k2pi\\16x=\frac{pi}{2}-8x+k2pi\end{cases}}\)
\(\orbr{\begin{cases}16x-8x=k2pi\\16x+8x=\frac{pi}{2}+k2pi\end{cases}}\)
\(\orbr{\begin{cases}8x=k2pi\\24x=\frac{pi}{2}+k2pi\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{kpi}{4}\\x=\frac{pi}{48}+\frac{kpi}{12}\end{cases}\left(k\in Z\right)}\)
sin^2(4x)+cos^2(6x)=1
\(\frac{1-cos8x}{2}+\frac{1+cos12x}{2}=1\)
\(\frac{1}{2}-\frac{1}{2}cos8x+\frac{1}{2}+\frac{1}{2}cos12x=1\)
\(\frac{1}{2}cos12x-\frac{1}{2}cos8x=0\)
\(cos12x-cos8x=0\)
\(-2sin10xsin2x=0\)
\(\orbr{\begin{cases}sin10x=0\\sin2x=0\end{cases}}\)
\(\orbr{\begin{cases}10x=kpi\\2x=kpi\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{kpi}{10}\\x=\frac{kpi}{2}\end{cases}}\)
\(x=\frac{kpi}{10}\left(k\in Z\right)\)