Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phản ánh được khả năng xảy ra của biến cố trên ta tính xác suất của biến cố đó trong trò chơi giao xúc xắc.
Xác suất của biến cố trong trò chơi này bằng tỉ số của số các kết quả thuận lợi cho biến cố và số các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc.
a: n(A)=1
n(omega)=216
=>P(A)=1/216
b: \(B=\left\{\left(SNN\right);\left(NSN\right);\left(NNS\right)\right\}\)
=>n(B)=3
=>P(B)=3/216=1/72
c: \(C=\left\{\left(NNS\right);\left(NNN\right);\left(SNN\right);\left(NSN\right)\right\}\)
=>P(B)=4/216=1/54
d: \(D=\left\{\left(SSN\right);\left(SNN\right);\left(NSN\right);\left(NNS\right);\left(NSS\right);\left(SNS\right)\right\}\)
=>P(D)=6/216=1/36
Có 2 trường hợp thuận lợi là các mặt 4 ,6
Do đó xác suất là: \(\dfrac{2}{6}=\dfrac{1}{3}\)
a: \(\Omega=\left\{1;2;3;4;5;6\right\}\Leftrightarrow n\left(\Omega\right)=6\)
\(A=\left\{2;5\right\}\)
=>P(A)=2/6=1/3
b: B={1;5}
=>n(B)=2
=>P(B)=2/6=1/3
Biến cố A có xác suất xảy ra là \(\frac{1}{6}\)và biến cố B có xác suất xảy ra là \(\frac{1}{6}\)
Tập hợp gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc là:
A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}.
Số phần tử của tập hợp A là 6.
a) Có ba kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố” là: mặt 2 chấm, mặt 3 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{3}{6} = \dfrac{1}{2}\).
b) Có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 4 dư 1” là: mặt 1 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{2}{6} = \dfrac{1}{3}\).
- Biến cố A là biến cố ngẫu nhiên vì nếu ta gieo được 2 lần cùng ra 1 thì tích của chúng sẽ không lớn hơn 1.
- Biến cố B là biến cố chắc chắn vì mặt có số chấm ít nhất là 1 nếu ta gieo 2 lần thì ít nhất chúng ta có kết quả là 2 nên tổng sẽ lớn hơn 1.
- Biến cố C là biến cố không thể do các mặt của xúc xắc là 1,2,3,4,5,6 mà trong các số này không có tích 2 số nào là 7.
- Biến cố D là biến cố ngẫu nhiên vì các mặt của xúc xắc là 1,2,3,4,5,6 mà trong các số này có rất nhiều số có tổng là 7 ví dụ như 1 và 6, 2 và 5 nhưng cũng có nhiều cặp số không có tổng là 7 như 3 và 1, 1 và 2.
Số chấm trên 1 con xúc xắc chỉ có thể là 1;2;3;4;5 hoặc 6
- Biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn 13” là biến cố chắc chắn nên biến cố có xác suất là 1.
- Biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 1” là biến cố không thể nên biến cố có xác suất là 0.
Vì tung đồng xu 20 lần mà có 12 lần mặt ngửa nên có 8 mặt sấp.
Xác suất của biến cố ''Tung được mặt sấp'' là: \(\dfrac{8}{20}=\dfrac{2}{5}\)
Đáp số: `2/5`.
Do đó: không có đáp án nào đúng cả.
Đây là toán nâng cao chuyên đề toán xác suất thống kê, cấu trúc thi chuyên, thi học sinh giỏi các cấp, thi violympic. Hôm nay Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
+ Khi gieo một con xúc xắc cân đối và đồng chất liên tiếp 2 lần, thì có thể có các khả năng sau xảy ra:
Trường hợp 1: sấp; sấp
Trường hợp 2: sấp; ngửa
Trường hợp 3: ngửa; sấp
Trường hợp 4: ngửa ngửa
+ Vậy khi gieo một con xúc xắc cân đối và đồng chất thì có bốn khả năng xảy ra.
Trong đó có một kết quả thuận lợi cho việc hai lần gieo đồng xu đều xuất hiện mặt ngửa.
+ Từ những lập luận trên ta có xác suất của biến cố hai lần gieo đồng xu đều xuất hiện mặt ngửa là:
1 : 4 = \(\dfrac{1}{4}\)
Chọn C. \(\dfrac{1}{4}\)
Chọn C