\(\left(2x+2\right)\sqrt{5x-6}=x^2+7x-6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2019

1 cách ngu học 

\(\left(2x+2\right)\sqrt{5x-6}=x^2+7x-6\)

\(\Leftrightarrow4.\left(x+1\right)^2.\left(5x-6\right)=\left(x^2+7x-6\right)^2\)

\(\Leftrightarrow20x^3-24x^2+40x^2-48x+20x-24=\left(x^2+7x-6\right)^2\)

\(\Leftrightarrow20x^3+16x^2-28x-24=\left(x^2+7x-6\right)^2\)

\(\Leftrightarrow20x^3+16x^2-28x-24-\left(x^2+7x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

2 tháng 10 2019

Giải sai r:\(\left(x^2+7x-6\right)^2\)chuển vế xuống mất mũ 2

4 tháng 3 2020

(x2 + x  + 1)(6 - 2x) = 0

<=> 6 - 2x = 0 (do x2 + x + 1 > 0)

<=> 2x = 6

<=> x = 3

Vậy S = {3}

(8x - 4)(x2 + 2x + 2) = 0

<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)

<=> 8x = 4

<=> x = 1/2 

Vậy S  = {1/2}

x3 - 7x + 6 = 0

<=> x3 - x - 6x + 6 = 0

<=> x(x2 - 1) - 6(x - 1) = 0

<=> x(x - 1)(x + 1) - 6(x - 1) = 0

<=> (x2 + x - 6)(x - 1) = 0

<=> (x2 + 3x - 2x - 6)(x - 1) = 0

<=> (x + 3)(x - 2)(x - 1) = 0

<=> x + 3 = 0

hoặc x - 2 = 0

hoặc x  - 1 = 0

<=> x = -3

hoặc x = 2

hoặc x = 1

Vậy S = {-3; 1; 2}

x5 - 5x3 + 4x = 0

<=> x(x4 - 5x2 + 4) = 0

<=> x(x4 - x2 - 4x2 + 4) = 0

<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0

<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0

<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x  + 1 = 0

<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1

Vậy S = {-2; -1; 0; 1; 2}

4 tháng 3 2020

+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

 - Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

  \(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)

Vậy \(S=\left\{3\right\}\)

+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

 - Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)

 - Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

   \(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)

Vậy \(S=\left\{\frac{1}{2}\right\}\)

+ Ta có: \(x^3-7x+6=0\)

       \(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)

       \(\Leftrightarrow x^2.\left(x-1\right)+x.\left(x-1\right)-6.\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\) 

       \(\Leftrightarrow\left(x-1\right).\left[x.\left(x-2\right)+3.\left(x-2\right)\right]=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)

       \(\Leftrightarrow x=1\left(TM\right)\)hoặc \(x=2\left(TM\right)\)hoặc \(x=-3\left(TM\right)\)

 Vậy \(S=\left\{-3;1;2\right\}\)

 + Ta có: \(x^5-5x^3+4x=0\)

        \(\Leftrightarrow x.\left(x^4-5x^2+4\right)=0\)

       \(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)

       \(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)

       \(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)

       \(\Leftrightarrow x=0\left(TM\right)\)

hoặc  \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)

hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)

Vậy \(S=\left\{-2;-1;0;1;2\right\}\)

!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!      

3 tháng 5 2019

a) Khai triển bình phương ròii giải như bình thường

b) <=>(x+2)(x2-2x+1)=0

sau đó tiếp tục giải phương trình tích là ra 

c) <=>x (2x2-5x-7)=0

<=> x=0

hoặc 2x2-5x-7=0

bn đọc tự giải^^

#hoctốt

#plsss...k☺

24 tháng 2 2019

Đây là toán 9 chứ

29 tháng 9 2019

\(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)

\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Vậy \(S=\left\{3;-2\right\}\)

Chúc bạn học tốt !!!

29 tháng 9 2019

\(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)

\(\Leftrightarrow\frac{x^2+2x-3x-6}{x-3}=0\)

\(\Leftrightarrow\frac{x\left(x+2\right)-3\left(x+2\right)}{x-3}=0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)

<=> x + 2 = 0

=> x = -2

Y
6 tháng 4 2019

a) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x^2-2x=x\\x^2-2x=-x\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x^2-3x=0\\x^2-x=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x\left(x-3\right)=0\\x\left(x-1\right)=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=1\end{matrix}\right.\left(TM\right)\)

Còn lại lm tương tự nha!

6 tháng 4 2019

Lê AnTrần Thị Hà Myh DThúy NONguyentasaka YugauPhùJakiNatOla Trương ThsvtkvtmNguyễn Thành Trươngị Hải Anh

Nguyễn HAce LeNguyễn ThRibMysterious sPTrần Việt Linhhương AnoyVõ Đông Anh Tuấneon_Tiểubàng giảiPersoni Nkok Ngokanh Hằnggonauy Tú

HoalsumingNhãAlone DoNguyễn QuCNguyễn Ngô Minh TríheNguyễn Thị Thảo Vyrru Ngỳnh Chianh Tuệ Minhy

13 tháng 5 2017

a)\(\left(x-2\right)\left(5-x\right)=7x-\left(x-1\right)\left(3-2x\right)\Leftrightarrow5x-x^2-10+2x=7x-3x+2x^2+3-2x\Leftrightarrow-3x^2+5x-13=0\)\(\Delta=b^2-4ac=25-4.\left(-3\right).\left(-13\right)=-131< 0\)

\(\Rightarrow\)phương trình vô nghiệm

12 tháng 4 2020

a/ \(\left|\frac{3x-6}{1-2x}\right|=x-2\) \(\left(x\ne\frac{1}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{3x-6}{1-2x}=x-2\\\frac{3x-6}{1-2x}=2-x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}3x-6=\left(x-2\right)\left(1-2x\right)\\3x-6=\left(2-x\right)\left(1-2x\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}3x-6=x+4x-2-2x^2\\3x-6=-x-4x+2+2x^2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2x^2+2x+4=0\\2x^2-8x+8=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\\x=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

KL: .............

b/ Tương tự

3 tháng 5 2019

a) 4(x+3)2=(2x+6)2

<=> 4(x2+6x+9)=4x2+24x+36

<=>4x2+24x+36=4x2+24+36

<=> 0x=0

=> x∈R

Vậy pt có nghiệm là : x ∈ R

3 tháng 5 2019

\(x^3-3x+2=0\)

\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy \(S=\left\{1;-2\right\}\)

\(2x^3+5x^2=7x\)

\(\Leftrightarrow x\left(2x^2+5x-7\right)=0\)

\(\Leftrightarrow x\left[2x\left(x-1\right)+7\left(x-1\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x+7\right)=0\)

Tự làm nốt