K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

a/ \(\left|\frac{3x-6}{1-2x}\right|=x-2\) \(\left(x\ne\frac{1}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{3x-6}{1-2x}=x-2\\\frac{3x-6}{1-2x}=2-x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}3x-6=\left(x-2\right)\left(1-2x\right)\\3x-6=\left(2-x\right)\left(1-2x\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}3x-6=x+4x-2-2x^2\\3x-6=-x-4x+2+2x^2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2x^2+2x+4=0\\2x^2-8x+8=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\\x=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

KL: .............

b/ Tương tự

25 tháng 2 2020

giup minh voi cac bạn

20 tháng 1 2019

a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)

<=> \(6x^2-5x+3-2x+9x-6x^2=0\)

<=> \(2x+3=0\)

<=> \(x=\frac{-3}{2}\)

b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)

<=> \(10x-40-6-4x=20x+4-4x\)

<=> \(6x-46-16x-4=0\)

<=> \(-10x-50=0\)

<=> \(-10\left(x+5\right)=0\)

<=> \(x+5=0\)

<=> \(x=-5\)

c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)

<=> \(8x+9x-15=36x-18-14\)

<=> \(8x+9x-36x=+15-18-14\)

<=> \(-19x=-14\)

<=> \(x=\frac{14}{19}\)

d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)

<=> \(12x+10-10x-3=8x+4x+2\)

<=> \(2x-7=12x+2\)

<=> \(2x-12x=7+2\)

<=> \(-10x=9\)

<=> \(x=\frac{-9}{10}\)

e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)

<=> \(x^2-6x-12-\left(x-4^2\right)=0\)

<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)

<=> \(x^2-6x-12-x^2+8x-16=0\)

<=> \(2x-28=0\)

<=> \(2\left(x-14\right)=0\)

<=> x-14=0

<=> x=14

20 tháng 1 2019

Luffy , cậu sai câu c nhé , kia là -17 ạ => x=17/19

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

14 tháng 2 2020

Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\) 

 \(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)

\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\) 

 \(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)

\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\) 

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)

26 tháng 6 2018

a) Qui đồng rồi khử mẫu ta được:

   3(3x+2)-(3x+1)=2x.6+5.2

<=> 9x+6-3x-1 = 12x+10

<=> 9x-3x-12x  = 10-6+1

<=> -6x            = 5

<=> x               = -5/6

Vậy ....

b) ĐKXĐ: \(x\ne\pm2\)

Qui đồng rồi khử mẫu ta được:

   (x+1)(x+2)+(x-1)(x-2) = 2(x2+2)

<=> x2+3x+2+x2-3x+2 = 2x2+4

<=> x2+x2-2x2+3x-3x = 4-2-2

<=> 0x             = 0

<=> x vô số nghiệm

Vậy x vô số nghiệm với x khác 2 và x khác -2

c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)

\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)

Vậy ...... 

d) (x+1)2-4(x2-2x+1) = 0

<=> x2+2x+1-4x2+8x-4 = 0

<=> -3x2+10x-3 = 0

giải phương trình

26 tháng 2 2022

hic, mk chx học

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!