Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 5 đáng lẽ phải có điều kiện gì mới được chứ.
VD
a=2,
b=c=d=e=g=1
Thấy vào thì 9≥10 là vô lí
a) (a + b + c)2 = [(a + b) + c]2 = (a + b)2 + 2(a + b)c + c2
= a2+ 2ab + b2 + 2ac + 2bc + c2
= a2 + b2 + c2 + 2ab + 2bc + 2ac.
b) (a + b – c)2 = [(a + b) – c]2 = (a + b)2 - 2(a + b)c + c2
= a2 + 2ab + b2 - 2ac - 2bc + c2
= a2 + b2 + c2 + 2ab - 2bc - 2ac.
c) (a – b –c)2 = [(a – b) – c]2 = (a – b)2 – 2(a – b)c + c2
= a2 – 2ab + b2 – 2ac + 2bc + c2
= a2 + b2 + c2 – 2ab + 2bc – 2ac.
bài này phải không nếu đúng thì tích hộ mình
c, là hằng đẳng thức nha bạn
(\(\sqrt{x}\)+\(\sqrt{2x}\))2=0
suy ra \(\sqrt{x}\)+\(\sqrt{2x}\)=0
\(\sqrt{x}\)=\(\sqrt{2x}\)
suy ra x=0
Bài 2: Tìm x:
a) \(3x^2\)\(-27x=0\)
\(< =>3x\left(x-9\right)=0\)
\(=>x=0\) hay \(x-9=0\)
\(=>x=0\) hay \(x=9\)
\(6,\\ a,P=9\left(x^2-2\cdot\dfrac{1}{9}x+\dfrac{1}{81}\right)+\dfrac{26}{9}=9\left(x-\dfrac{1}{9}\right)^2+\dfrac{26}{9}\ge\dfrac{26}{9}\\ P_{min}=\dfrac{26}{9}\Leftrightarrow x-\dfrac{1}{9}=0\Leftrightarrow x=\dfrac{1}{9}\\ b,Q=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\\ Q_{min}=\dfrac{1}{4}\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\\ c,R=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\\ R_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)
a: BC=căn 6^2+8^2=10cm
AM=BC/2=5cm
b:
ΔAEH vuông tại A có AI là trung tuyến
nên IH=IA
=>góc IHA=góc IAH
góc IAH+góc MAB
=góc MBA+góc IHA=90 độ
=>góc IAM=90 độ
=>AI vuông góc AM
\(1,\\ a,=6x^4y^4-x^3y^3+\dfrac{1}{2}x^4y^2\\ b,=4x^3+5x^2-8x^2-10x+12x+15\\ =4x^3-3x^2+2x+15\\ 2,\\ a,=7\left(x^2-6x+9\right)=7\left(x-3\right)^2\\ b,=\left(x-y\right)^2-36=\left(x-y-6\right)\left(x-y+6\right)\\ 3,\\ \Leftrightarrow x\left(x^2-0,36\right)=0\\ \Leftrightarrow x\left(x-0,6\right)\left(x+0,6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,6\\x=-0,6\end{matrix}\right.\)
Ta có:
\(\dfrac{3}{10}>\dfrac{3}{15};\dfrac{3}{11}>\dfrac{3}{15};\dfrac{3}{12}>\dfrac{3}{15};\dfrac{3}{13}>\dfrac{3}{15};\dfrac{3}{14}>\dfrac{3}{15}\)
\(\Rightarrow S>1\) (*)
\(\dfrac{3}{10}< \dfrac{1}{3};\dfrac{3}{11}< \dfrac{1}{3};\dfrac{3}{12}< \dfrac{1}{3};\dfrac{3}{13}< \dfrac{1}{3};\dfrac{3}{14}< \dfrac{1}{3}\)
\(\Rightarrow S< \dfrac{5}{3}< 2\)(**)
Từ (*) và (**)
\(\Rightarrow1< S< 2\)
\(\Rightarrow\) S không là số tự nhiên
x2-9-(x+3)=0
=>(x2-9)-(x+3)=0
=>(x+3)(x-3)-(x-3)=0
=>(x-3)(x+3-1)=0
=>(x-3)(x+2)=0
=>x-3=0 hoặc x+2=0
=> x=3 hoặc x=-2
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+2014}=\dfrac{2014}{x\left(x+2014\right)}\)