
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\left(x+\frac{1}{9}\right)\left(2x-5\right)< 0\)
TH1 : \(\hept{\begin{cases}x+\frac{1}{9}>0\\2x-5< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{9}\\x< \frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\frac{-1}{9}< x< \frac{5}{2}\)( thỏa )
TH2 : \(\hept{\begin{cases}x+\frac{1}{9}< 0\\2x-5>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< -\frac{1}{9}\\x>\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\frac{5}{2}< x< -\frac{1}{9}\)( loại )
Vậy....
b) \(x^2-6x+9< 0\)
\(\Leftrightarrow\left(x-3\right)^2< 0\)( vô lý )
Vậy bpt vô nghiệm

\(\frac{1-2x}{4}-2\ge\frac{1-x}{8}\)
\(\Leftrightarrow\frac{2\left(1-2x\right)}{8}-\frac{16}{8}\ge\frac{1-x}{8}\)
\(\Leftrightarrow2\left(1-2x\right)-16\ge1-x\)
\(\Leftrightarrow2-4x-16\ge1-x\)
\(\Leftrightarrow x-4x\ge16+1-2\)
\(\Leftrightarrow-3x\ge15\)
\(\Leftrightarrow x\le-5\)
Vậy tập nghiệm của bất phương trình trên là:\(S=\left\{x|x\le-5\right\}\)
#hoktot<3#

C nhé
Vì;Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0) trong đó a và b là hai số đã cho, a# 0, được gọi là bất phương trình bậc nhất một ẩn.
NHỚ K NHA
Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0) trong đó a và b là hai số đã cho, a# 0, được gọi là bất phương trình bậc nhất một ẩn.
chọn C

\(b,\frac{x+5}{6}+\frac{x-1}{3}\le\frac{x+3}{2}-1.\)
\(\Rightarrow\frac{x+5}{6}+\frac{2\left(x-1\right)}{6}\le\frac{x+3}{2}-1\)
\(\Rightarrow\frac{x+5}{6}+\frac{2x-2}{6}\le\frac{x+3}{2}-1\)
\(\Rightarrow\frac{x+5+2x-2}{6}\le\frac{x+3}{2}-1\)
\(\Rightarrow\frac{3x+3}{6}\le\frac{3\left(x+3\right)}{6}-\frac{6}{6}\)
\(\Rightarrow\frac{3x+3}{6}\le\frac{3x+9}{6}-\frac{6}{6}\)
\(\Rightarrow\frac{3x+3}{6}\le\frac{3x+9-6}{6}\)
\(\Rightarrow\frac{3x+3}{6}\le\frac{3x+3}{6}\)
\(\Rightarrow3x+3\le3x+3\)
\(\Rightarrow S=\varnothing\)

\(a,\)\(2x+3>5\)
\(\Rightarrow2x>5-3\)
\(\Rightarrow2x>2\)
\(\Rightarrow x>1\)
\(\frac{3}{5}x+\frac{12}{15}< 0\)
\(\Rightarrow\frac{3}{5}x+\frac{4}{5}< 0\)
\(\Rightarrow3x+4< 0\)
\(\Rightarrow3x< -4\)
\(\Rightarrow x>\frac{-4}{3}\)

\(\frac{4x-1}{3}-\frac{2-x}{15}\le\frac{10x-3}{5}\)
\(\Rightarrow\frac{5\left(4x-1\right)}{15}-\frac{2-x}{15}-\frac{3\left(10x-3\right)}{15}\le0\)
\(\Rightarrow\frac{20x-5-2+x-30x+9}{15}\le0\)
\(\Rightarrow-9x+2\le0\)
\(\Rightarrow9x-2\ge0\)
\(\Rightarrow9x\ge2\)
\(\Rightarrow x\ge\frac{2}{9}\)

1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0
giải bất phương trình sau :
a , \(\frac{x+1}{x+7}\ge0\)
b , \(\frac{2x-1}{3x+2}< 0\)
cảm ơn trước nhé !

a,TH1:\(\hept{\begin{cases}x+1\ge0\\x+7\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge-1\\x\ge-7\end{cases}}\)\(\Rightarrow x\ge-1\)
TH2:\(\hept{\begin{cases}x+1\le0\\x+7\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\le-1\\x\le-7\end{cases}}\)\(\Rightarrow x\le-7\)
Tập nghiệm của BPT là ...
b,TH1:\(\hept{\begin{cases}2x-1< 0\\3x+2>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x< 1\\3x>-2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-\frac{2}{3}\end{cases}}\)\(\Rightarrow-\frac{2}{3}< x< \frac{1}{2}\)
TH2:\(\hept{\begin{cases}2x-1>0\\3x+2< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x>1\\3x< -2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -\frac{2}{3}\end{cases}}\)(loại)
Tập nghiệm của BPT....
Tự làm đi e
\(\left(x+\frac{1}{9}\right)\left(2x-5\right)< 0\)
TH1 : \(\hept{\begin{cases}x+\frac{1}{9}< 0\\2x-5>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -\frac{1}{9}\\x>\frac{5}{2}\end{cases}}}\)vô lí
TH2 : \(\hept{\begin{cases}x+\frac{1}{9}>0\\2x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-\frac{1}{9}\\x< \frac{5}{2}\end{cases}\Leftrightarrow}-\frac{1}{9}< x< \frac{5}{2}}\)
Vậy tập nghiệm của bft là S = { x | -1/9 < x < 5/2 }