K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

a)  x 2   =   12 x   +   288 ⇔   x 2   –   12 x   –   288   =   0

Có a = 1; b’ = -6; c = -288;  Δ ’   =   b ’ 2   –   a c   =   ( - 6 ) 2   –   1 . ( - 288 )   =   324   >   0

Phương trình có hai nghiệm:

Giải bài 21 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm  x 1   =   24   v à   x 2   =   - 12 .

b) Giải bài 21 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔   x 2   +   7 x   =   228     ⇔   x 2   +   7 x   –   228   =   0

Có a = 1; b = 7; c = -228;  Δ   =   b 2   –   4 a c   =   7 2   –   4 . 1 . ( - 228 )   =   961   >   0

Phương trình có hai nghiệm:

Giải bài 21 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm  x 1   =   12   v à   x 2   =   - 19 .

Kiến thức áp dụng

Phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac.

+ Nếu Δ > 0, phương trình có hai nghiệm phân biệt Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Nếu Δ = 0, phương trình có nghiệm kép Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9 ;

+ Nếu Δ < 0, phương trình vô nghiệm.

* Về An-khô-va-ri-zmi (Muhammad inb Musa al – Khwarizmi):

An-khô-va-ri-zmi (780 – 850) là nhà toán học nổi tiếng người Trung Á.

Năm 820, ông viết một cuốn sách về Toán học, tên cuốn sách được dịch sang tiếng Anh với tiêu đề Algebra (dịch tiếng Việt là Đại số).

Ông được biết đến như là cha đẻ của môn Đại số. Ông dành cả đời mình nghiên cứu về đại số và đã có nhiều phát minh quan trọng trong lĩnh vực toán học.

Ngoài ra, ông cũng là nhà thiên văn học, địa lý học nổi tiếng và đóng góp một phần quan trọng trong việc vẽ bản đồ thế giới thời bấy giờ.

1 tháng 1 2018

x2 = 12x + 288

⇔ x2 – 12x – 288 = 0

Có a = 1; b’ = -6; c = -288; Δ’ = b’2 – ac = (-6)2 – 1.(-288) = 324 > 0

Phương trình có hai nghiệm:

Giải bài 21 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm x1 = 24 và x2 = -12.

14 tháng 2 2019

Giải bài 21 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔ x2 + 7x = 228

⇔ x2 + 7x – 228 = 0

Có a = 1; b = 7; c = -228; Δ = b2 – 4ac = 72 – 4.1.(-228) = 961 > 0

Phương trình có hai nghiệm:

Giải bài 21 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm x1 = 12 và x2 = -19.

4 tháng 4 2017

a) x2 = 12x + 288 ⇔ x2 - 12x + 288 = 0

∆’ = (-6)2 – 1 . (-288) = 36 + 288 = 324

√∆’ = 18

x1 = 6 + 18 = 24, x2 = 6 – 18 = -12

b) x2 + x = 19

⇔ x2 + 7x – 228 = 0, ∆ = 49 – 4 . (-228) = 49 + 912 = 961 = 312

x1 = = 12, x2 = = -19


a: \(\Leftrightarrow2\cdot5\sqrt{x-3}-\dfrac{1}{2}\cdot2\sqrt{x-3}+\dfrac{1}{7}\cdot7\sqrt{x-3}=20\)

=>\(10\cdot\sqrt{x-3}=20\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7

b: =>|x-3|=2

=>x-3=2 hoặc x-3=-2

=>x=5 hoặcx=1

28 tháng 8 2021

\(1,ĐKx\ge5\)

\(\sqrt{\left(x-5\right)\left(x+5\right)}+2\sqrt{x-5}=3\sqrt{x+5}+6\)

\(\Rightarrow\sqrt{x-5}\left(\sqrt{x+5}+2\right)-3\left(\sqrt{x+5}+2\right)=0\)

\(\Rightarrow\left(\sqrt{x+5}+2\right)\left(\sqrt{x-5}-3\right)=0\)

\(\left[{}\begin{matrix}\sqrt{x+5}=-2loại\\\sqrt{x-5}=3\end{matrix}\right.\)\(\Rightarrow x-5=9\Rightarrow x=14\)(TMĐK)

2a,ĐK \(x\ge0;x\ne9\)

,\(B=\dfrac{7\left(3-\sqrt{x}\right)-12}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}=\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}\)

\(M=\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(M=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

 

 

 

20 tháng 11 2023

\(\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2x+6}{x-1}+\dfrac{3y+14}{y+3}=18\end{matrix}\right.\left(x\ne1;y\ne-3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2x-2+8}{x-1}+\dfrac{3y+9+5}{y+3}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2\left(x-1\right)}{x-1}+\dfrac{8}{x-1}+\dfrac{3\left(y+3\right)}{y+3}+\dfrac{5}{y+3}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\2+\dfrac{8}{x-1}+3+\dfrac{5}{y+3}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{8}{x-1}+\dfrac{5}{y+3}=13\end{matrix}\right.\) (I) 

Đặt: \(\left\{{}\begin{matrix}u=\dfrac{1}{x-1}\\v=\dfrac{1}{y+3}\end{matrix}\right.\)

Hệ (I) trở thành: 

\(\Leftrightarrow\left\{{}\begin{matrix}12u+7v=19\\8u+5v=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}24u+14v=38\\24u+15v=39\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12u+7=19\\v=1\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}12u=12\\v=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=1\end{matrix}\right.\) 

Trả ẩn phụ: 

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-1}=1\\\dfrac{1}{y+3}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y+3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\left(tm\right)\)

Vậy hệ pt có 1 cặp nghiệm duy nhất là: (2;-2) 

20 tháng 11 2023
 

⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192x+6x−1+3y+14y+3=18(x≠1;y≠−3){12�−1+7�+3=192�+6�−1+3�+14�+3=18(�≠1;�≠−3)

⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192x−2+8x−1+3y+9+5y+3=18⇔{12�−1+7�+3=192�−2+8�−1+3�+9+5�+3=18

⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192(x−1)x−1+8x−1+3(y+3)y+3+5y+3=18⇔{12�−1+7�+3=192(�−1)�−1+8�−1+3(�+3)�+3+5�+3=18

⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192+8x−1+3+5y+3=18⇔{12�−1+7�+3=192+8�−1+3+5�+3=18

⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=198x−1+5y+3=13⇔{12�−1+7�+3=198�−1+5�+3=13 (I) 

Đặt: ⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩u=1x−1v=1y+3{�=1�−1�=1�+3

Hệ (I) trở thành: 

⇔{12u+7v=198u+5v=13⇔{12�+7�=198�+5�=13

⇔{24u+14v=3824u+15v=39⇔{24�+14�=3824�+15�=39

⇔{12u+7=19v=1⇔{12�+7=19�=1 

⇔{12u=12v=1⇔{12�=12�=1

⇔{u=1v=1⇔{�=1�=1 

Trả ẩn phụ: 

⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩1x−1=11y+3=1⇔{1�−1=11�+3=1

⇔{x−1=1y+3=1⇔{�−1=1�+3=1

⇔{x=2y=−2(tm)⇔{�=2�=−2(��)

Vậy hệ pt có 1 cặp nghiệm duy nhất là: (2;-2) 

29 tháng 10 2021

\(PT\Leftrightarrow x^2-2x+\sqrt{6x^2-12x+7}=0\\ \Leftrightarrow x^2-2x+1+\sqrt{6x^2-12x+7}-1=0\\ \Leftrightarrow\left(x-1\right)^2+\dfrac{6\left(x-1\right)^2}{\sqrt{6x^2-12x+7}+1}=0\\ \Leftrightarrow\left(x-1\right)\left(x-1+\dfrac{6}{\sqrt{6x^2-12x+7}+1}\right)=0\\ \Leftrightarrow x=1\left(x-1+\dfrac{6}{\sqrt{6x^2-12x+7}+1}>0\right)\)

29 tháng 10 2021

em cảm ơn