K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

Nhân phương trình thứ nhất của hệ với m + 2, nhân phương trình thứ hai với 2 ta được hệ phương trình

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Trừ hai phương trình vế theo vế ta được phương trình:

    (3m2 - m - 4)y = (m + 1)(m + 2) (1)

    + Với m = -1 phương trình (1) có dạng: 0y = 0

    Phương trình này nhận mọi giá trị thức của y làm nghiệm. Lúc đó thay m = -1 vào hệ phương trình đã cho, hai phương trình trở thành một phương trình.

    x - y = 1 ⇒ y = x + 1, x tùy ý.

    + Với m = 4/3 phương trình (1) có dạng: 0y = -14/9

    Phương trình này vô nghiệm, do đó hệ phương trình đã cho vô nghiệm.

    + Với m ≠ -1 và m ≠ 4/3, phương trình (1) có nghiệm duy nhất

Giải sách bài tập Toán 10 | Giải sbt Toán 10

 Thay vào một trong hai phương trình của hệ đã cho ta suy ra

Giải sách bài tập Toán 10 | Giải sbt Toán 10

 Kết luận

    m = 4/3: Hệ phương trình đã cho vô nghiệm.

    m = -1: Hệ phương trình đã cho có vô số nghiệm

    x = a, y = a + 1, a là số thực tùy ý.

    m ≠ 1, m ≠ 4/3: Hệ phương trình đã cho có nghiệm duy nhất :

Giải sách bài tập Toán 10 | Giải sbt Toán 10

17 tháng 9 2021

a) Lấy (1)+(2)+(3) là tìm được z rồi thế z vào tìm x, y
b) Lấy (1) + (2) - (3) là tìm được y

17 tháng 9 2021

\(a)\hept{\begin{cases}x-2y+z=12\\2x-y+3z=18\\-3x+3y+2z=-9\end{cases}\Leftrightarrow\hept{\begin{cases}x-2y+z=12\\3y+z=-6\\6z=21\end{cases}}}\)

\(\text{Đáp số: }(x;y;z)=(\frac{16}{3};-\frac{19}{6};\frac{7}{2})\)

\(b)\hept{\begin{cases}x+y+z=7\\3x-2y+2z=5\\4x-y+3z=10\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=7\\-5y-z=16\\0y+0z=-2\end{cases}}\)

\(\text{ Hệ phương trình vô nghiệm.}\)

21 tháng 12 2016

Gọi độ dài mỗi cạnh của tam giác lần lượt là x;y;z

Theo bài ra ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và x+y+z=72

theo tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{72}{12}=6\)

=> x=18

y=24

z=30

21 tháng 12 2016

Bài 21:

Gọi độ dài 3 cạnh của tam giác đó là: a, b, c ( a, b, c > 0 )

Theo đề bài, ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a + b + c = 72

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{72}{12}=6\)

Do đó:

\(\frac{a}{3}=6=>a=6\cdot3=18\)

\(\frac{b}{4}=6=>b=6\cdot4=24\)

\(\frac{c}{5}=6=>c=6\cdot5=30\)

Vậy độ dài 3 cạnh của tam giác đó theo thứ tự là: 18; 24; 30 ( cm ) thỏa mãn yêu cầu đề bài

Bài 22:

Gọi số học sinh 3 lớp 7A, 7B, 7C theo thứ tự là: a, b, c ( a, b, c thuộc N* )

Theo đề bài, ta có:

\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\) và c - a = 16

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{c-a}{6-4}=\frac{16}{2}=8\)

Do đó:

\(\frac{a}{4}=8=>a=8\cdot4=32\)

\(\frac{b}{5}=8=>b=8\cdot5=40\)

\(\frac{c}{6}=8=>c=8\cdot6=48\)

Vậy số học sinh 3 lớp 7A, 7B, 7C theo thứ tự là: 32; 40; 48 ( học sinh ) thỏa mãn yêu cầu đề bài

 

27 tháng 6 2016

undefined

27 tháng 6 2016

...,,,,,,,,,,@ giải một bài toán 

24 tháng 12 2016

TỪ PT (1) TA CÓ

2X +20Y=60

=>X=(60-20Y)/2=30-10Y

THAY X=30-10Y VÀO PT (2) TA ĐƯỢC

((30-10Y)+3Y)2+((30-10Y)+11Y)2=1170

phần sau bạn tự giải nhé

 

 

24 tháng 12 2016

k cần bài tuong tu nao hit, chỉ 5p giải lao giua 2 tiêt em lam giup a

thay x = -9-6y vào ta có:

(-9-6y +2y)2 + ( -9-6y +4y)2 =26

triển khai ta co pt: 5y2 + 27y + 34 = 0

dùng máy tính giải có: y1 = -2 ; y2 = -3,4

=> x1 = 3; x2= ...

( đã có đường đi đúng nhất định kq đ, thui em vào học r)