K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

\(a\text{) }pt\Leftrightarrow\left(m-2\right)x=m+1\)

\(+m-2=0\Leftrightarrow m=2\) thì pt trở thành 0 = 3 (vô lí) => pt vô nghiệm.

\(+m-2\ne0\Leftrightarrow m\ne2\) thì pt tương đương \(x=\frac{m+1}{m-2}\)

Vậy: 

+m = 0 thì pt vô nghiệm.

+m khác 0 thì pt có nghiệm duy nhất \(x=\frac{m+1}{m-2}\)

\(b\text{) }pt\Leftrightarrow\left(m^2-2\right)x=-4\)

\(+m^2-2=0\Leftrightarrow m=\sqrt{2}\text{ hoặc }m=-\sqrt{2}\) thì pt thành 0 = -4 (vô lí) => pt vọ nghiệm.

\(+m^2-2\ne0\Leftrightarrow m\ne\sqrt{2};-\sqrt{2}\)thì pt tương đương \(x=\frac{-4}{m^2-2}\)

Vậy: 

+m=√2 ; -√2 thì pt vô nghiệm.

+m khác √2; -√2, pt có nghiệm duy nhất \(x=-\frac{4}{m^2-2}\)

 

 

5 tháng 4 2018

a) \(m\left(x-1\right)=2x+1\)

\(\Leftrightarrow xm-m=2x+1\)

\(\Leftrightarrow xm-2x=m+1\)

\(\Leftrightarrow x\left(m-2\right)=m+1\) (*)

+) Nếu \(m-2\ne0\Leftrightarrow m\ne2\)

Phương trình có 1 nghiệm duy nhất  \(x=\frac{m+1}{m-2}\)

+) Nếu m = 2

(*) \(\Leftrightarrow0x=3\) ( vô lí )

Suy ra phương trình vô nghiệm

Vậy khi \(m\ne2\) thì phương trình có 1 nghiệm duy nhất \(x=\frac{m+1}{m-2}\)

       khi m = 2 thì phương trình vô nghiệm

22 tháng 8 2019

1, a)Vs a,b,c >0 ,áp dụng bđt svac-xơ có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

<=> \(\frac{1}{a+b+c}\ge\frac{9}{a+b+c}\) (vô lý)

=>Phương trình \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) vô nghiệm

8 tháng 2 2020

a) Xét hpt : \(\hept{\begin{cases}x+my=1\\mx-3my=2m+3\end{cases}}\)

Tại m = -3 ta có :

\(\hept{\begin{cases}x-3y=1\\-3x+3.3y=-2.3+3\end{cases}}\)

<=> \(\hept{\begin{cases}x-3y=1\\-3x+9y=-3\end{cases}}\)

<=> \(\hept{\begin{cases}x-3y=1\\-x+3y=-1\end{cases}}\)

<=>\(\hept{\begin{cases}x-3y=1\\x-3y=1\end{cases}}\)

Do đó hpt có vô số nghiệm với m = -3

8 tháng 2 2020

b) Xét hpt : \(\hept{\begin{cases}x+my=1\\mx-3ym=2m+3\end{cases}}\)

<=> \(\hept{\begin{cases}x=1-my\\m\left(1-my\right)-3ym=2m+3\end{cases}}\)

<=> \(\hept{\begin{cases}x=1-my\\m-m^2y-3my=2m+3\end{cases}}\)

<=> \(\hept{\begin{cases}x=1-my\\\left(m^2+3m\right)y=m-2m-3\end{cases}}\)

<=> \(\hept{\begin{cases}x=1-my\\\left(m^2+3m\right)y=-m-3\end{cases}}\)

Ta có : Hpt có nghiệm duy nhất

<=> Pt trên có nghiệm duy nhất

<=> m2 + 3m khác 0

<=> m(m + 3) khác 0

<=> m khác 0 và m khác -3

=> Ta có :

\(\hept{\begin{cases}x=1-my\\m\left(m+3\right)y=-3-m\end{cases}}\)

<=> \(\hept{\begin{cases}y=\frac{-\left(m+3\right)}{m\left(m+3\right)}\\x=1-my\end{cases}}\)

<=> \(\hept{\begin{cases}x=2\\y=\frac{-1}{m}\end{cases}}\)

<=> \(\hept{\begin{cases}m\left(m+3\right)=0\\-\left(m+3\right)=0\end{cases}}\)

<=>\(\hept{\begin{cases}m=0orm=-3\\m=-3\end{cases}}\)

<=> m = -3

<=> m(m+3) = 0 và m(m + 3) khác 0

<=> m = 0 haowcj m = -3 và m khác -3

<=> m = 0

Vậy