K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)=1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}\)

\(1+\frac{a}{c}+\frac{a}{b}+\frac{b^2+c^2}{bc}=1+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}\)

Áp dụng bất đẳng thức Cosi vào 3 số "1"; "\(\frac{b}{c}\)";"\(\frac{c}{b}\)" có:

1+\(\frac{b}{c}+\frac{c}{b}\ge3\sqrt{1.\frac{b}{c}.\frac{c}{b}}\ge3\)

Hay 1 + \(\frac{a^2}{bc}\ge3\:\)(*)

\(\Leftrightarrow\frac{a^2}{bc}\ge2\) (1)

Áp dụng bất đẳng thức Cosi vào 2 số "\(\frac{a}{c}\)";"\(\frac{a}{b}\)" có:

\(\frac{a}{c}+\frac{a}{b}\ge2\sqrt{\frac{a}{c}.\frac{a}{b}}=2\sqrt{\frac{a^2}{bc}}\) (2)

Từ (1),(2) suy ra: \(\frac{a}{c}+\frac{a}{b}\ge2\sqrt{2}\) (**)

Cộng (*),(**) vế theo vế ta có: \(1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}\ge3+2\sqrt{2}\)

Hay \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)\ge3+2\sqrt{2}\left(dpcm\right)\)

22 tháng 3 2020

Đổi tên thành "Thử thách cuối tuần" chứ mấy bài này không giải trí mấy.

Bài 1:

Căng quá, đang đi cứu trợ :))

Bài 2:

Xét \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{1+y+z+yz}=\frac{yz+y+z+1+y-z}{\left(y+1\right)\left(z+1\right)}\)

\(=\frac{\left(y+1\right)\left(z+1\right)+y-z}{\left(y+1\right)\left(z+1\right)}=1+\frac{y-z}{\left(y+1\right)\left(z+1\right)}=1+\frac{\left(y+1\right)-\left(z+1\right)}{\left(y+1\right)\left(z+1\right)}=1+\frac{1}{z+1}-\frac{1}{y+1}\)

Vì vai trò của x, y, z là như nhau nên chứng minh tương tự với 3 phân thức còn lại ta cũng có:

\(\frac{y+2yz+1}{y+yz+yx+1}=1+\frac{1}{x+1}-\frac{1}{z+1}\)

\(\frac{z+2zx+1}{z+zx+zy+1}=1+\frac{1}{y+1}-\frac{1}{x+1}\)

Cộng theo vế 3 đẳng thức ta có:

\(P=1+1+1+\left(\frac{1}{x+1}-\frac{1}{x+1}\right)+\left(\frac{1}{y+1}-\frac{1}{y+1}\right)+\left(\frac{1}{z+1}-\frac{1}{z+1}\right)=3\)

Vậy....

Bài 3:

Vì tam giác ABC vuông tại A nên theo Pytago ta có:

\(a^2=b^2+c^2\Leftrightarrow a=\sqrt{b^2+c^2}\)

\(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)=1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}=1+a\cdot\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{b^2+c^2}{bc}\) (1)

Áp dụng BĐT Cô-si:

+) \(b^2+c^2\ge2bc\Leftrightarrow\frac{b^2+c^2}{bc}\ge2\Leftrightarrow\frac{b^2+c^2}{bc}+1\ge3\) (2)

+) \(\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}}\Leftrightarrow\left(\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{4}{bc}\) (3)

Từ (2) và (3) ta có: \(\left(b^2+c^2\right)\left(\frac{1}{b}+\frac{1}{c}\right)^2\ge2bc\cdot\frac{4}{bc}=8\)

\(\Leftrightarrow\sqrt{b^2+c^2}\cdot\left(\frac{1}{b}+\frac{1}{c}\right)\ge2\sqrt{2}\)

\(\Leftrightarrow a\cdot\left(\frac{1}{b}+\frac{1}{c}\right)\ge2\sqrt{2}\) (4)

Từ (1), (2) và (4) suy ra \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)\ge3+2\sqrt{2}\) ( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow b=c\) hay tam giác ABC vuông cân tại A.

Tìm GTNN của: a. \(A=x-\sqrt{x}\) b. \(B=x-\sqrt{x-2005}\) c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\) d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\) e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\) f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\) g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\) h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\) i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\) k. \(K=x+y\) biết x và y là các số dương thỏa mãn...
Đọc tiếp

Tìm GTNN của:

a. \(A=x-\sqrt{x}\)

b. \(B=x-\sqrt{x-2005}\)

c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\)

f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)

g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\)

h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\)

i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)

k. \(K=x+y\) biết x và y là các số dương thỏa mãn \(\dfrac{a}{x}+\dfrac{b}{y}=1\)(a và b là các hằng số dương )

l. \(L=\left(x+y\right)\left(y+z\right)\) với các số dương x,y,z và \(xyz\left(x+y+z\right)=1\)

m. \(M=x^4+y^4+z^4\) biết rằng \(xy+yz+zx=1\)

n. \(N=a^3+b^3+c^3\) biết a,b,c lớn hơn -1 và \(a^2+b^2+c^2=12\)

o. \(O=\dfrac{x}{2}+\dfrac{2}{x-1}\) với x>1

p. \(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x+y+z=1\)

q. \(Q=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x^2+y^2+z^2=1\)

r. \(R=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\) với a,b,c là các số dương và \(a+b+c=6\)

s. \(S=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\) với a,b,c là các số dương và \(a+b+c=1\)

t. \(T=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{d+a}\) với a,b,c,d là các số dương và \(a+b+c+d=1\)

u. \(U=\dfrac{x^2+y^2}{x-y}\) với x>y>0 và xy=1

v. \(V=\dfrac{5-3x}{\sqrt{1-x^2}}\)

w. \(W=\dfrac{1}{x}+\dfrac{1}{y}\) với x>0, y>0 và \(x^2+y^2=1\)

x. \(X=\left(1+x\right)\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\left(1+\dfrac{1}{x}\right)\) với x>0, y>0 và \(x^2+y^2=1\)

y. \(Y=\dfrac{2}{2-x}+\dfrac{1}{x}\) với 0<x<2

z. \(Z=3^x+3^y\) với x+y=4

0
AH
Akai Haruma
Giáo viên
17 tháng 1 2019

Câu 1:

\(A=21\left(a+\frac{1}{b}\right)+3\left(b+\frac{1}{a}\right)=21a+\frac{21}{b}+3b+\frac{3}{a}\)

\(=(\frac{a}{3}+\frac{3}{a})+(\frac{7b}{3}+\frac{21}{b})+\frac{62}{3}a+\frac{2b}{3}\)

Áp dụng BĐT Cô-si:
\(\frac{a}{3}+\frac{3}{a}\geq 2\sqrt{\frac{a}{3}.\frac{3}{a}}=2\)

\(\frac{7b}{3}+\frac{21}{b}\geq 2\sqrt{\frac{7b}{3}.\frac{21}{b}}=14\)

Và do $a,b\geq 3$ nên:

\(\frac{62}{3}a\geq \frac{62}{3}.3=62\)

\(\frac{2b}{3}\geq \frac{2.3}{3}=2\)

Cộng tất cả những BĐT trên ta có:

\(A\geq 2+14+62+2=80\) (đpcm)

Dấu "=" xảy ra khi $a=b=3$

AH
Akai Haruma
Giáo viên
17 tháng 1 2019

Câu 2:

Bình phương 2 vế ta thu được:

\((x^2+6x-1)^2=4(5x^3-3x^2+3x-2)\)

\(\Leftrightarrow x^4+12x^3+34x^2-12x+1=20x^3-12x^2+12x-8\)

\(\Leftrightarrow x^4-8x^3+46x^2-24x+9=0\)

\(\Leftrightarrow (x^2-4x)^2+6x^2+24(x-\frac{1}{2})^2+3=0\) (vô lý)

Do đó pt đã cho vô nghiệm.

KẾT QUẢ CUỘC THI TOÁN DO DƯƠNG PHAN KHÁNH DƯƠNG TỔ CHỨC . Giải nhất : Ngô Tấn Đạt . Phần thưởng : Thẻ cào 100k + 30GP Giải nhì : Hoàng Thảo Linh và Diệp Băng Dao . Phần thưởng : Thẻ cào 50k + 20GP Giải ba : Truy kích và Luân Đào . Phần thưởng : 15GP Nhờ thầy @phynit trao giải cho những bạn trên ạ . Cảm ơn các bạn dã ủng hộ cuộc thi của mình . GOOD LUCK ! ĐÁP ÁN VÒNG 3 : " CUỘC THI TOÁN...
Đọc tiếp

KẾT QUẢ CUỘC THI TOÁN DO DƯƠNG PHAN KHÁNH DƯƠNG TỔ CHỨC .

Giải nhất : Ngô Tấn Đạt . Phần thưởng : Thẻ cào 100k + 30GP

Giải nhì : Hoàng Thảo Linh và Diệp Băng Dao . Phần thưởng : Thẻ cào 50k + 20GP

Giải ba : Truy kích và Luân Đào . Phần thưởng : 15GP

Nhờ thầy @phynit trao giải cho những bạn trên ạ . Cảm ơn các bạn dã ủng hộ cuộc thi của mình . GOOD LUCK !

ĐÁP ÁN VÒNG 3 : " CUỘC THI TOÁN DO DƯƠNG PHAN KHÁNH DƯƠNG TỔ CHỨC "

Câu 1 :

a ) ĐKXĐ : \(x\ge0\) , \(x\ne25\) , \(x\ne9\)

b )

\(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\dfrac{25-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\left(\dfrac{25-x-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\dfrac{-5}{\sqrt{x}+5}:\left(\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\)

\(=\dfrac{-5}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}+3\right)}{\sqrt{x}+5}\)

\(=\dfrac{-5}{\sqrt{x}+5}\times\dfrac{\sqrt{x}+5}{-\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5}{\sqrt{x}+3}\)

c )

Để biểu thức A nhận giá trị nguyên thì \(5\) phải chia hết cho \(\sqrt{x}+3\)

Ta có : \(Ư\left(5\right)=\left(-5;-1;1;5\right)\) . Mà \(\sqrt{x}+3\ge3\) .

\(\Rightarrow\sqrt{x}+3=5\Rightarrow\sqrt{x}=2\Rightarrow x=4\left(N\right)\)

Vậy \(x=4\) thì biểu thức A nhận giá trị nguyên .

d )

Ta có :

\(B=\dfrac{A\left(x+16\right)}{5}=\dfrac{5\left(x+16\right)}{\dfrac{\sqrt{x}+3}{5}}=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{x-9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\)

Theo BĐT Cô - Si cho hai số không âm ta có :

\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\ge2\sqrt{\sqrt{x}+3\times\dfrac{25}{\sqrt{x}+3}}=2\sqrt{25}=10\)

\(\Rightarrow\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\ge10-6=4\)

Dấu \("="\) xảy ra khi \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow\sqrt{x}+3=5\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

Vậy GTNN của \(B\) là 4 khi \(x=4\)

Câu 2 :

a ) \(\left(x^2-x+1\right)\left(x^2+4x+1\right)=6x^2\)

\(\Leftrightarrow x^4+4x^3+x^2-x^3-4x^2-x+x^2+4x+1-6x^2=0\)

\(\Leftrightarrow x^4+3x^3-8x^2+3x+1=0\)

Xét : 0 không phải là nghiệm của phương trình trên .

\(\Leftrightarrow x^2+3x-8+\dfrac{3}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+\left(3x+\dfrac{3}{x}\right)-8=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)-10=0\)

Đặt \(x+\dfrac{1}{x}=t\) . Phương trình trở thành :

\(t^2+3t-10=0\)

\(\Delta=9+40=49>0\)

\(\Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{-3+\sqrt{49}}{2}=2\\t_2=\dfrac{-3-\sqrt{49}}{2}=-5\end{matrix}\right.\)

Với \(t_1=2\) :

\(\Leftrightarrow x+\dfrac{1}{x}=2\)

\(\Leftrightarrow\) \(\dfrac{x^2}{x}+\dfrac{1}{x}=\dfrac{2x}{x}\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

Với \(t=-5\) :

\(\Leftrightarrow x+\dfrac{1}{x}=-5\)

\(\Leftrightarrow\) \(\dfrac{x^2}{x}+\dfrac{1}{x}=\dfrac{-5x}{x}\)

\(\Leftrightarrow x^2+5x+1=0\)

\(\Delta=25-4=21>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-5+\sqrt{21}}{2}\\x_2=\dfrac{-5-\sqrt{21}}{2}\end{matrix}\right.\)

Vậy \(S=\left\{1;\dfrac{-5+\sqrt{21}}{2};\dfrac{-5-\sqrt{21}}{2}\right\}\)

b ) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)

\(\Leftrightarrow3\left(x^2+x\right)-2\sqrt{x^2+x}-1=0\)

\(\Leftrightarrow3\left(x^2+x\right)-3\sqrt{x^2+x}+\sqrt{x^2+x}-1=0\)

\(\Leftrightarrow3\sqrt{x^2+x}\left(\sqrt{x^2+x}-1\right)+\left(\sqrt{x^2+x}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+x}-1\right)\left(3\sqrt{x^2+x}+1=0\right)\)

\(\) \(\Leftrightarrow\left(\sqrt{x^2+x}-1\right)=0\) . Vì \(3\sqrt{x^2+x}+1>0\)

\(\Leftrightarrow x^2+x-1=0\)

\(\Delta=1+4=5>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-1+\sqrt{5}}{2}\\x_2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy ..............................

c )

\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\) ( ĐK : \(x\ge-1\) )

\(\Leftrightarrow\sqrt{x+3}+2x\sqrt{x+1}-2x-\sqrt{\left(x+1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(\sqrt{x+3}-2x\right)\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x\\\sqrt{x}+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+3=4x^2\end{matrix}\right.\\x+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy......................

d ) \(x^2+9x+20=2\sqrt{3x+10}\) ( ĐK : \(x\ge-\dfrac{10}{3}\) )

\(\Leftrightarrow\left(x^2+6x+9\right)+\left(3x+10-2\sqrt{3x+10}+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{3x+10}-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{3x+10}=1\end{matrix}\right.\Leftrightarrow x=-3\)

Vậy...............................

Câu 3 :

a )

\(VT=\dfrac{\sqrt{\dfrac{abc+4}{a}-4\sqrt{\dfrac{bc}{a}}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{abc+4}{a}-\dfrac{4\sqrt{abc}}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{abc+4-4\sqrt{abc}}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{\left(\sqrt{abc}-2\right)^2}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\dfrac{\sqrt{abc}-2}{\sqrt{a}}}{\sqrt{abc}-2}=\dfrac{1}{\sqrt{a}}\left(đpcm\right)\)

b )

Nếu trong \(a+bc;b+ca;c+ab\) không có số nào lớn hơn 1 thì giá trị của mỗi số hạng củaVT ít nhất là \(\dfrac{1}{3}\)

Nếu trong \(a+bc;b+ca;c+ab\) có một số lớn hơn 1 khi đó : \(c=\dfrac{1-ab}{a+b}\)\(a+b< 1\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{2a+2bc+1}+\dfrac{1}{2b+2ca+1}\ge\dfrac{4}{2a+2b+2bc+2ca+2}=\dfrac{2}{a+b+2-ab}\)

Khi đó ta cần chứng minh :

\(\dfrac{2}{2+a+b-ab}+\dfrac{1}{2c+2ab+1}\ge1\)

Hay :\(\dfrac{2}{a+b-ab+2}+\dfrac{a+b}{a+b-2ab+2ab\left(a+b\right)+2}\ge1\)

Ta có :

\(VT=\dfrac{4+4\left(a+b\right)-4ab+3ab\left(a+b\right)+\left(a+b\right)^2}{\left(2+a+b-ab\right)\left(2+a+b-2ab+2ab\left(a+b\right)\right)}\)

Đặt \(S=a+b< 1;P=ab\) . Ta cần chứng minh :

\(\dfrac{4+4S-4P+3SP+S^2}{4S-6P+3SP+S^2+2S^2P-2P^2+2SP^2+4}\ge1\)

\(\Leftrightarrow2P\ge2S^2P-2P^2+2S^2P\)

\(\Leftrightarrow2P\left(1-S\right)\left(P+S+1\right)\ge0\) ( Đúng vì \(S< 1\) )

Dấu \("="\) xảy ra khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoàn vị .

Câu 4 :

A B C H D E

a )

Tứ giác ADHE có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^0\)

\(\Rightarrow ADHE\) là hình chữ nhật .

\(\Rightarrow\widehat{AED}=\widehat{HAE}\)

Ta lại có : \(\widehat{HAE}=\widehat{ABC}\) ( Cùng phụ với góc C )

\(\Rightarrow\widehat{AED}=\widehat{ABC}\)

Xét \(\Delta AED\)\(\Delta ABC\) ta có :

\(\left\{{}\begin{matrix}\widehat{A}:Chung\\\widehat{AED}=\widehat{ABC}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AED\sim\Delta ABC\left(g-g\right)\)

b )

Ta có : \(\left\{{}\begin{matrix}S_{ADE}=\dfrac{1}{2}S_{ADHE}\\S_{ABC}=2S_{ADHE}\end{matrix}\right.\Rightarrow S_{ADE}=\dfrac{1}{4}S_{ABC}\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}}=\dfrac{1}{4}\)

Mặt khác : \(\Delta ADE\sim\Delta ABC\) ( Câu a )

\(\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{DE}{BC}\right)^2=\dfrac{1}{4}\)

\(\Rightarrow\) \(\dfrac{DE}{BC}=\dfrac{1}{2}\Rightarrow DE=\dfrac{1}{2}BC\)

Gọi M là trung điểm của BC .

\(\Delta ABC\) vuông tại A . \(\Rightarrow AM=\dfrac{1}{2}BC\)

\(\Rightarrow DE=AM\)

\(AH=DE\) ( Do ADHE là hình chữ nhật )

\(\Rightarrow AM=AH\) ( Đường trung tuyến cũng là đường cao )

\(\Rightarrow\Delta ABC\) vuông cân tại A ( đpcm )

Câu 5 :

Ta có :

\(\left\{{}\begin{matrix}2011+y^2=y^2+xy+yz+zx=\left(x+y\right)\left(y+z\right)\\2011+z^2=z^2+xy+yz+zx=\left(x+z\right)\left(y+z\right)\\2011+x^2=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\end{matrix}\right.\)

\(\Rightarrow Q=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\dfrac{\left(x+y\right)\left(x+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(x+z\right)\left(y+z\right)}}\)

\(=2\left(xy+yz+zx\right)=2.2011=4022\)

13
25 tháng 6 2018

bucminh

25 tháng 6 2018

Mi kết liễu đời ta đii :v

21 tháng 7 2018

2

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)

ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1

=> A ≥ 1

=> Min A =1 khi 1/3 ≤ x ≤ 2/3

31 tháng 7 2018

BTVN nhiều nhỉ?

a,A=-1

b,B=2x-4y

c,C=2x^2-4

Bài 1: 

a: \(A=\left|2a-1\right|-2a\)

TH1: a>=1/2

A=2a-1-2a=-1

TH2: a<1/2

A=1-2a-2a=1-4a

b: \(B=x-2y-\left|x-2y\right|\)

TH1: x>=2y

A=x-2y-x+2y=0

TH2: x<2y

A=x-2y+x-2y=2x-4y

c: \(=x^2+\left|x^2-4\right|\)

TH1: x>=2 hoặc x<=-2

\(A=x^2+x^2-4=2x^2-4\)

TH2: -2<x<2

\(A=x^2+4-x^2=4\)

d: \(D=2x-1-\dfrac{\left|x-5\right|}{x-5}\)

TH1: x>5

\(D=2x-1-1=2x-2\)

TH2: x<5

D=2x-1+1=2x

12 tháng 10 2022

a: \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{x-1}=\dfrac{-2\left(\sqrt{x}-1\right)}{x-1}=\dfrac{-2}{\sqrt{x}+1}\)

b: \(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}:\left(\dfrac{x+y+2xy+1-xy}{1-xy}\right)\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

c: \(=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)

giải giúp mk vs mk sắp thi rùi!!! 1. a. Cho P=\(\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+3}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{3\sqrt{z}}{\sqrt{xz}+3\sqrt{z}+3}\) và xyz =9. Tính \(\sqrt{10P-1}\) b. Cho x,y,z >0 thỏa mãn: x+y+z + \(\sqrt{xyz}\) =4 . Tính B= \(\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\left(4-y\right)\right)}\) 2. a. giải phương trình \(\dfrac{x^2}{\left(x+2\right)^2}+3=3x^2-6x\) b....
Đọc tiếp

giải giúp mk vs mk sắp thi rùi!!!

1. a. Cho P=\(\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+3}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{3\sqrt{z}}{\sqrt{xz}+3\sqrt{z}+3}\) và xyz =9. Tính \(\sqrt{10P-1}\)

b. Cho x,y,z >0 thỏa mãn: x+y+z + \(\sqrt{xyz}\) =4 . Tính B= \(\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\left(4-y\right)\right)}\)

2. a. giải phương trình \(\dfrac{x^2}{\left(x+2\right)^2}+3=3x^2-6x\)

b. \(\left\{{}\begin{matrix}x^2+y^2+xy+1=2x\\x\left(x+y\right)^2+x-2=2y^2\end{matrix}\right.\)

3. a.Tìm tất cae các nghiệm nguyên của phương trình \(x^2+x+2y^2+y=2xy^2+xy+3\)

b. CMR: \(a^3_1+a^3_2+a^3_3+....+a^3_n\) chia hết cho 3 biết \(a_1,a_2,a_3,...,a_n\) là các chữ số của \(2019^{2018}\)

4. Cho tam giác MNP có 3 góc M, N, P nhọn, nội tiếp đường tròn tâm O bán kính R. Gọi Q là trung điểm của NP và các đường cao MD, NE, PF của tam giác MNP cắt nhau tại H.

a. MH =2OQ B. Nếu MN+MP = 2NP thì sin N+ sin P = 2sinM c. ME.FH +MF .HE = \(R^2\sqrt{2}\) biết NP = \(R\sqrt{2}\) 5. Cho a,b,c dương thỏa mãn \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\) . Tìm GTNN của P= \(\dfrac{ab^2}{a+b}+\dfrac{bc^2}{b+c}+\dfrac{ca^2}{c+a}\)
0
21 tháng 5 2017

from giả thiết => x+y+z=xyz

biến đổi như sau:\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}=\dfrac{x}{\sqrt{yz+x^2yz}}=\dfrac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

=\(\sqrt{\dfrac{x^2}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\)

21 tháng 5 2017

shit , có vậy mak t nhìn cũng ko ra ~