Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thật là bạn có thể giải hết không vậy, violympic toán 8 vòng 8 khó lắm đấy
\(\left\{{}\begin{matrix}x-y-z=0\\x+2y-10z=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=3z\\x=y+z=4z\\x+2y=10z\end{matrix}\right.\)
\(B=\dfrac{2x^2+4xy}{y^2+z^2}=\dfrac{2x\left(x+2y\right)}{9z^2+z^2}=\dfrac{2.4z.10z}{10.z^2}=8\)
Ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2a+2b+2c}{a+b+c}=2\)
\(\Rightarrow\) a + b = 2c; b + c = 2a; c + a = 2b
\(\Rightarrow\) M = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
= \(\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{a+c}{a}\right)\)
= \(\frac{2c}{b}\times\frac{2a}{c}\times\frac{2b}{a}\)
= 8
Vậy: M = 8.
ảnh dau