Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh tứ giác ABOC nội tiếp được đường tròn.
A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0
=> tứ giác ABOC nội tiếp được đường tròn.
b) Vẽ cát tuyến ADE của (O) sao cho ADE nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh A B 2 = A D . A E .
Tam giác ADB đồng dạng với tam giác ABE
⇒ A B A E = A D A B ⇔ A B 2 = A D . A E
c) Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H thẳng hàng.
Ta có D H A ^ = E H O ^
nên D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H thẳng hàng.
Có 1 phần câu trả lời ở đây.
Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
=>AH*AO=AB^2
Xet ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB^2=AD*AE=AH*AO
=>AD/AO=AH/AE
=>ΔADH đồng dạng với ΔAOE
=>góc ADH=góc AOE
=>góc DHO+góc DEO=180 độ
=>DEOH nội tiếp
=>góc EHO=góc EDO
a: góc OBA+góc OCA=180 độ
=>ABOC nội tiếp
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
b: DE//CF
=>sđ cung CD+sđ cung EF
góc AIB=1/2(sđ cung BD+sđ cung EF)
ABOC nội tiếp
=>góc AOB=góc ACB=1/2*sđ cung BC
=1/2(sđ cung EF+sđ cung EB)
=>góc AIB=góc AOB
=>AOIB nội tiếp
=>góc OIA=90 độ
ΔODE cân tại O
mà OI là đường cao
nên I là trung điểm của DE
khúc cuối câu b không nhất thiết phải dùng tam giác cân nha. Có OIA= 90 độ thì có thể dùng định lí 3 dòng để suy ra trung điểm nè
a) Xét tứ giác ABOC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
ΔODE cân tại O có OI là trung tuyến
nên OI vuông góc DE
góc OIA=góc OBA=90 độ
=>OIBA nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
=>AH*OA=AB^2
Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB/AE=AD/AB
=>AB^2=AE*AD=AH*AO
a: Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=> A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại H và H là trung điểm của BC
Ta có: ΔOED cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)ED tại I
=>OI\(\perp\)AE tại I
Xét ΔAIO vuông tại H và ΔAHK vuông tại H có
\(\widehat{IAO}\) chung
Do đó: ΔAIO~ΔAHK
=>\(\dfrac{AI}{AH}=\dfrac{AO}{AK}\)
=>\(AH\cdot AO=AI\cdot AK\)
Ta có góc OIA= góc OBA= góc OCA=90 độ
=> đỉnh I,B,C cùng nhìn cạnh AO dưới 1 góc khổng đổi
=> O,I,B,A,C cùng thuộc 1 đường tròn
=>ABIC và OICA nội tiếp
Cậu ơi cái BDIC nội tiếp là k chứng minh đc nha cậu tớ thử nhiều cách rồi