Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Biểu thức không viết được thành tích. Bạn xem lại.
b. $(x-y)a+(x+y)b+(y+z)a+(z-y)b$
$=a(x-y+y+z)+b(x+y+z-y)$
$=a(x+z)+b(x+z)=(x+z)(a+b)$
c. $(x-y)a+(x+y)b+(y+z)a+(z-y)b$
$=a(x-y+y+z)+b(x+y+z-y)=a(x+z)+b(x+z)=(x+z)(a+b)$
d. $(x+y+z)a+(-x-y-z)a+a(x+y)+az$
$=(x+y+z)a-(x+y+z)a+a(x+y+z)=a(x+y+z)$
![](https://rs.olm.vn/images/avt/0.png?1311)
a)tìm x,y thuộc N biết : 23-y^2=7(x-2016)^2b)tìm 2 số nguyên tố a,b biết : 3a-13=b(a-3)cần gấp trước 8:00giải nhanh mình link cho
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\left(-x+y\right)-\left(z+y-x\right)=-x+y-z-y+x=-z\)
\(b.\left(a-b\right)-\left(x-b+a\right)=a-b-x+b-a=-x\)
Các câu còn lại tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{a}{b}< \frac{c}{d}\)(vì x<y)
\(\Rightarrow\)ad < bc (nhân chéo) (1)
Xét tích: a(b+d) = ab. ad (2)
b(a+c) = ab . bc (3)
Từ (1),(2),(3) \(\Rightarrow\)a(b+d) < b(a+c)
\(\Rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+d}\)(*)
Xét tích: c(b+d) = bc .cd (4)
d(a+c) = ad .cd (5)
Từ (1), (4), (5) \(\Rightarrow\)d(a+c) <c(b+d)
\(\Rightarrow\)\(\frac{a+c}{b+d}< \frac{c}{d}\)(**)
Từ (*) và (**) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Hay : \(x< z< y\)(đpcm)
a ) x y 2 y z = x y 2 : y y z : y = x y z b ) a 00 a ¯ b 00 b ¯ = a 00 a ¯ : 1001 b 00 b ¯ : 1001 = a b
c ) a b 00 ab ¯ c d 00 c d ¯ = a b 00 ab ¯ : 10001 c d 00 c d ¯ : 10001 = a b ¯ c d ¯
d ) x y z − y z t y 2 z 2 − y z = y z ( x − 1 ) : ( − y z ) y z ( y z − 1 ) : ( − y z ) = t − x 1 − y z