Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\sin\widehat{ACB}=\dfrac{AB}{BC}\)
nên \(AB=\dfrac{3}{5}\cdot20=12\left(cm\right)\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBD vuông tại B có BA là đường cao ứng với cạnh huyền CD, ta được:
\(AC\cdot AD=AB^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(BH\cdot BC=AB^2\)(2)
Từ (1) và (2) suy ra \(AC\cdot AD=BH\cdot BC\)
a) Ta có: ΔABD vuông tại A(gt)
nên A nằm trên đường tròn đường kính BD(Định lí quỹ tích cung chứa góc)
mà BD là đường kính của (O)
nên A\(\in\)(O)(Đpcm)
b) Xét (O) có
\(\widehat{AKB}\) là góc nội tiếp chắn cung AB
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
Do đó: \(\widehat{AKB}=\widehat{ADB}\)(Hệ quả góc nội tiếp)
a) Xét tứ giác AEHF có
\(\widehat{FAE}=90^0\)
\(\widehat{AFH}=90^0\)
\(\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=EF(hai đường chéo)
Câu 1:
Kẻ BH⊥AC và DK⊥AC
Dễ thấy \(\Delta AHB\sim\Delta AEC;\Delta AKD\sim\Delta AFC\)
Do đó \(\dfrac{AB}{AC}=\dfrac{AH}{AE};\dfrac{AD}{AC}=\dfrac{AK}{AF}\Leftrightarrow AB\cdot AE=AC\cdot AH;AD\cdot AF=AC\cdot AK\)
\(\Leftrightarrow AB\cdot AE+AD\cdot AF=AC\left(AH+AK\right)=AC^2\left(A\right)\)
Câu 2:
ABCD là htc nên \(AD=BC=AB\)
Ta có \(AD=AB=BC=\dfrac{BD}{\tan C}=\dfrac{6}{\sqrt{3}}=2\sqrt{3}\left(cm\right)\)
\(AH=AD\cdot\sin D=AD\cdot\sin C=2\sqrt{3}\cdot\sin60^0=3\left(cm\right)\)
\(DH=AD\cdot\cos D=\sqrt{3}\left(cm\right)\)
Áp dụng Talet: \(\dfrac{AI}{IH}=\dfrac{DH}{AB}=\dfrac{\sqrt{3}}{2\sqrt{3}}=\dfrac{1}{2}\Leftrightarrow AI=2IH\)
Mà \(AI+IH=AH=3\Leftrightarrow3IH=3\Leftrightarrow IH=1\Leftrightarrow AI=2\left(cm\right)\left(A\right)\)