Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét ΔMEB và ΔMCF có
\(\widehat{MEB}=\widehat{MCF}\left(=\widehat{AEF}\right)\)
\(\widehat{M}\) chung
Do đó: ΔMEB\(\sim\)ΔMCF(g-g)
Suy ra: \(\dfrac{ME}{MC}=\dfrac{MB}{MF}\)
hay \(ME\cdot MF=MB\cdot MC\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)
Suy ra: \(\widehat{AFE}=\widehat{ABC}\)(hai góc tương ứng)
Câu b
Từ N kể đường thẳng song song với BC cắt đường thẳng AB tại K => KBCN là hình thang (*)
Lại có góc BKN = ABC ( đồng vị), CNK = ACB (đồng vị) và ABC = ACB nên BKN = CNK (**)
từ (*) và (**) => KBCN là hình thang cân => BK = CN = BM.
=> AK = AN nên tam giác AKN cân tại A => AO là đường trung trực của KN => OK = ON (4)
vì OI là trung trực của MN nên OM = ON (5)
từ (4) và (5) => OM = OK => tam giác OMK cân tại O lại có BM = BK (cmt) nên OB v^g góc với AB.
Tam giác ABO và Tam giác ACO có: AB = ÃC, BAO = CAO (gt) , AO chung nên tam giác ABO = tam giác ACO (c,g,c) => ACO = ABO = 90độ. hay OC vuông góc với AC.
a) Ta có: Điểm K đối xứng với điểm F qua AC => FC=KC; AF=AK
=> \(\Delta\)ACF=\(\Delta\)ACK (c.c.c) => ^AFC=^AKC (2 góc tương ứng)
Ta thấy tứ giác ABFC nội tiếp đường tròn tâm O => ^AFC=^ABC.
H là trực tâm của tam giác ABC => CH\(\perp\)AB (tại D)
=> ^HCB + ^ABC = 900 (1)
Lại có AH\(\perp\)BC => ^LHC + ^HCB = 900 (2)
Từ (1) và (2) => ^ABC=^LHC. Mà ^LHC + ^AHC = 1800
=> ^ABC + ^AHC = 1800. Do ^ABC=^AFC=^AKC (cmt) => ^AKC + ^AHC= 1800
Xét tứ giác AHCK có: ^AKC + ^AHC =1800 => Tứ giác AHCK nội tiếp đường tròn (đpcm).
b) AO cắt GI tại Q
Gọi giao điểm của AO và (O) là P = >^ACP=900 => ^CAP+^CPA=900 (*)
Thấy tứ giác ACPB nội tiếp đường tròn (O) => ^CPA=^ABC
Mà ^ABC+^AHC=1800 => ^CPA+^AHC=1800 (3).
Ta có tứ giác AHCK là tứ giác nội tiếp (cmt) => ^KAI=^CHI
Lại có \(\Delta\)ACF=\(\Delta\)ACK => ^FAC=^KAC hay ^KAI=^GAI => ^GAI=^CHI
Xét tứ giác AHGI: ^GAI=^GHI (=^CHI) (cmt) = >Tứ giác AHGI nội tiếp đường tròn
=> ^AIG+^AHG=1800 hay ^AIG + ^AHC=1800 (4)
Từ (3) và (4) => ^AIG=^CPA (**)
Từ (*) và (**) => ^CAP+^AIG=900 hay ^IAQ+^AIQ=900 => \(\Delta\)AIQ vuông tại Q
Vậy AO vuông góc với GI (đpcm).
b: Xét ΔABM vuông tại A có AK là đường cao
nên \(BK\cdot BM=AB^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)
hay \(\dfrac{BK}{BH}=\dfrac{BC}{BM}\)
Xét ΔBKC và ΔBHM có
\(\dfrac{BK}{BH}=\dfrac{BC}{BM}\)
\(\widehat{MBH}\) chung
Do đó: ΔBKC\(\sim\)ΔBHM