K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

1)Xét tứ giác EMAF có 3 goc vg => AEMF la hcn => các điểm A,E,F,H cùng nằm trên một đường tròn 

2)

10 tháng 2 2016

dùng tứ giác nội tiếp là ra bạn à

 

19 tháng 12 2016

Đã có một lời giải mình đăng cho bạn về tính chất của hàng điều hoà rồi đó.

Điều cần CM tương đương với \(A,E,M,F\) là hàng điều hoà, lại thêm \(H\) trung điểm \(AM\) nên chỉ cần CM:

\(HA^2=HE.HF\).

Ta có \(HA^2=HB.HC\) còn \(HB.HC=HE.HF\) là do tam giác \(BHE\) và \(FHC\) đồng dạng.

Để mình suy nghĩ thêm coi có cách nào không dùng hàng điều hoà không.

13 tháng 12 2016

B A C H E M F D

13 tháng 12 2016

bạn bít giải ko giúp mình với

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)

b) Xét ΔMEB và ΔMCF có 

\(\widehat{MEB}=\widehat{MCF}\left(=\widehat{AEF}\right)\)

\(\widehat{M}\) chung

Do đó: ΔMEB\(\sim\)ΔMCF(g-g)

Suy ra: \(\dfrac{ME}{MC}=\dfrac{MB}{MF}\)

hay \(ME\cdot MF=MB\cdot MC\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)(hai góc tương ứng)