K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2023

A = \(\dfrac{2}{\sqrt{x}+2}\) ( \(x\ge\) 0)

\(\sqrt{x}\) \(\ge\) 0 \(\Rightarrow\) \(\sqrt{x}\) + 2 \(\ge\) 2 \(\Rightarrow\)  \(\dfrac{1}{\sqrt{x}+2}\) \(\le\) \(\dfrac{1}{2}\) \(\Rightarrow\) \(\dfrac{1}{\sqrt{x}+2}\) \(\times\) 2 \(\le\) \(\dfrac{1}{2}\) \(\times\) 2

\(\Rightarrow\) \(\dfrac{2}{\sqrt{x}+2}\) \(\le\) \(\dfrac{2}{2}\) (đpcm)

6 tháng 6 2023

ĐKXĐ: x ≥ 0

Do x ≥ 0 ⇒ √x ≥ 0 và √x + 1 > 0

⇒ 0 ≤ √x < √x + 1

⇒ √x/(√x + 1) < 1

7 tháng 6 2023

\(Xét:\dfrac{\sqrt{x}}{\sqrt{x}+1}\) ta thấy rõ ràng : \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}+1\ge1\)

\(\Rightarrow\sqrt{x}\) không thể : \(\ge\sqrt{x}+1\)

Do đó : \(0< \dfrac{\sqrt{x}}{\sqrt{x}+1}< 1\)

DT
7 tháng 6 2023

\(\dfrac{\sqrt{x}}{\sqrt{x}+1}\left(ĐK:x\ge0\right)\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\\ =1-\dfrac{1}{\sqrt{x}+1}\)

Ta thấy :

\(1>0,\sqrt{x}+1\ge1>0\forall x\ge0\\ =>\dfrac{1}{\sqrt{x}+1}>0\\ =>-\dfrac{1}{\sqrt{x}+1}< 0\\ =>1-\dfrac{1}{\sqrt{x}+1}< 1\\ =>\dfrac{\sqrt{x}}{\sqrt{x}+1}< 1\)

15 tháng 4 2016

cái đoạn y = 1/(x^2+can x) là không có đâu nhá 

r: ĐKXĐ: \(x\ge-2\)

22 tháng 8 2021

Vì `2>0` và `x^{2}>0` ( Với `x\ne0` )

`->(2)/(x^{2})>0`

Vậy với mọi giá trị của `x` thì căn thức đều có nghĩa ( `x\ne0` )

ĐKXĐ: \(x\ne0\)

5 tháng 7 2017

A, xin lỗi mk bị sai dấu, đây mới đúng nhé:

\(8-4\sqrt{6}+3-\left(4-4\sqrt{6}+6\right)\)

\(8-4\sqrt{6}+3-4+4\sqrt{6}-6\)

= 1

5 tháng 7 2017

Bạn ghi đề rõ ra được không?

Mọi người chỉ mình ạ! Bài 1: giải phương trình \(\sqrt{5x^2}=2x-1\)* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé * Với nhưng dạng thế nào thì có thể bình phương ạ! Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều...
Đọc tiếp

Mọi người chỉ mình ạ! 

Bài 1: giải phương trình 

\(\sqrt{5x^2}=2x-1\)

* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé 

* Với nhưng dạng thế nào thì có thể bình phương ạ! 

Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. 

* Nó có phụ thuộc vào dạng bài không ạ hay là chỉ có những bài mới được làm như vậy còn chỉ có những bài thì phải tìm điều kiện ngay từ đầu ạ ( và làm như vậy có bị mất trường hợp nào đi không) . giải thích tại sao 

Bài 3: 

Ví dụ: \(x^2\ge2x\) . 

* Tại sao khi mà chia cả hai vế cho x thì chỉ nhân 1 trường hợp ( bị thiếu trường hợp). Còn khi mà chuyển vế sang cho lớn hơn hoặc bằng 0 thì lại đủ trường hợp. giải thích mình tại sao lại bị thiếu và đủ trường hợp ạ! 

Giups mình đầy đủ chỗ (*) nhá! 

5

Bài 1: 

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2-4x^2+4x-1=0\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.