K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2020

\(\left(x-7\right)\left(x-5\right)\left(x-4\right)\left(x-2\right)=72\)

\(\Leftrightarrow\left(x-7\right)\left(x-2\right)\left(x-5\right)\left(x-4\right)-72=0\)

\(\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72=0\)

Đặt \(x^2-9x+17=t\)

\(\Rightarrow\left(t-3\right)\left(t+3\right)-72=0\)

\(\Leftrightarrow t^2-9-72=0\)\(\Leftrightarrow t^2-81=0\)

\(\Leftrightarrow\left(t-9\right)\left(t+9\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t-9=0\\t+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=9\\t=-9\end{cases}}\)

TH1: \(t=-9\)\(\Leftrightarrow x^2-9x+17=-9\)

\(\Leftrightarrow x^2-9x+26=0\)( vô nghiệm )

TH2: \(t=9\)\(\Leftrightarrow x^2-9x+17=9\)\(\Leftrightarrow x^2-9x+8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=8\end{cases}}\)

Vậy phương trình có tập nghiệm \(S=\left\{1;8\right\}\)

9 tháng 1 2020

ko vt lại đề

=> (x-7)(x-2)(x-5)(x-4)=72

=>(x2-9x+14)(x2-9x+20)=72 (*)

đặt x2-9x+17=k

(*)<=> (k-3)(k+3)=72

=>k2-9=72

=>k2-81=0

=>k= + hoặc - 9

xét k=9=>.....

xét k=-9=>.....

13 tháng 11 2019

Không vì:

Thay \(\left(x=2,y=-4\right)\)vào phương trình ta có

\(-2-2.\left(-4\right)=5\)

Vậy đẳng thức trên không đúng

Nên; \(\left(x=2,y=-4\right)\)không thoả mãn phương trình.

15 tháng 3 2020

\(\left(x-1\right)^2+x\left(5-x\right)=0\)

\(\Leftrightarrow x^2-2x+1+5x-x^2=0\)

\(\Leftrightarrow3x+1=0\)

\(\Leftrightarrow3x=-1\)

\(x=\frac{-1}{3}\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2023

1. Đặt $x^2+x=a$ thì pt trở thành:

$a^2+4a=12$
$\Leftrightarrow a^2+4a-12=0$

$\Leftrightarrow  (a-2)(a+6)=0$

$\Leftrightarrow a-2=0$ hoặc $x+6=0$

$\Leftrightarrow x^2+x-2=0$ hoặc $x^2+x+6=0$

Dễ thấy $x^2+x+6=0$ vô nghiệm.

$\Rightarrow x^2+x-2=0$

$\Leftrightarrow (x-1)(x+2)=0$

$\Leftrightarrow x=1$ hoặc $x=-2$

AH
Akai Haruma
Giáo viên
24 tháng 8 2023

2.

$x(x-1)(x+1)(x+2)=24$
$\Leftrightarrow [x(x+1)][(x-1)(x+2)]=24$

$\Leftrightarrow (x^2+x)(x^2+x-2)=24$

$\Leftrightarrow a(a-2)=24$ (đặt $x^2+x=a$)

$\Leftrightarrow a^2-2a-24=0$

$\Leftrightarrow (a+4)(a-6)=0$

$\Leftrightarrow a+4=0$ hoặc $a-6=0$

$\Leftrightarrow x^2+x+4=0$ hoặc $x^2+x-6=0$

Nếu $x^2+x+4=0$

$\Leftrightarrow (x+\frac{1}{2})^2=\frac{1}{4}-4<0$ (vô lý - loại)

Nếu $x^2+x-6=0$

$\Leftrightarrow (x-2)(x+3)=0$

$\Leftrightarrow x-2=0$ hoặc $x+3=0$
$\Leftrightarrow x=2$ hoặc $x=-3$