Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ \(2\le x\le4\).Đặt A=\(\sqrt[4]{\left(x-2\right)\left(4-x\right)}+\sqrt[4]{x-2}+\sqrt[4]{4-x}+6x\sqrt{3x}\)
Do x\(\ge2>0\)nên ADBĐT CAUCHY ta được:
\(\sqrt[4]{1\cdot1\cdot\left(x-2\right)\left(4-x\right)}\le\frac{1+1+x-2+4-x}{4}=1\)
\(\sqrt[4]{x-2}\le\frac{1+1+1+x-2}{4}=\frac{1}{4}\)
\(\sqrt[4]{4-x}\le\frac{1+1+1+4-x}{4}=\frac{7}{4}\)
\(6x\sqrt{3x}=2\sqrt{27x^3}\le x^3+27\)
_Do đó A\(\le1+\frac{1}{4}+\frac{7}{4}+x^3+27=x^3+30\)
Dấu = xảy ra \(\Leftrightarrow x=3\)(thỏa mãn ĐKXĐ)
a,ĐK: x≥-1
Đặt \(t=\sqrt{x^2+5x+4}\left(t\ge0\right)\)
⇒ \(t^2+t-6=0\)
\(\Leftrightarrow\left(t+3\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-3\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x^2+5x+4}=2\)
\(\Leftrightarrow x^2+5x+4=4\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-5\left(loại\right)\end{matrix}\right.\)
b,ĐK: \(0\le x\le2\)
Ta có: \(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)
\(\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\) (1)
Đặt \(t=\sqrt{x^2+3x}\left(t\ge0\right)\)
\(\Rightarrow\left(1\right)\Leftrightarrow-t^2+10-3t=0\)
\(\Leftrightarrow\left(t+5\right)\left(2-t\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-5\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x^2+3x}=2\)
\(\Leftrightarrow x^2+3x=4\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\left(loại\right)\\x=1\left(tm\right)\end{matrix}\right.\)
thiếu đề à
giải pt
\(\sqrt[3]{x^4-x^2}+4=4x^2-3x\)