Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{x^2+x-2}+\sqrt{x^2+2x-3}=\sqrt{x^2+4x-5}\left(1\right)\)
ĐK: \(\left[{}\begin{matrix}x\le-5\\x\ge1\end{matrix}\right.\left(a\right)}\)
Với x = 1 (1) đúng nên x = 1 là 1 nghiệm của (1)
Với \(x\ne1\) chia cả 2 vế của (1) cho \(\sqrt{x-1}\):
\(\left(1\right)\Leftrightarrow\sqrt{x+2}+\sqrt{x+3}=\sqrt{x+5}\left(2\right)\)
ĐK: \(x\ge-5\)
Kết hợp với ĐK(a) =>\(x\ge1\left(b\right)\)
\(\left(2\right)\Leftrightarrow x+2+x+3+2\sqrt{\left(x+2\right)\left(x+3\right)}=x+5\\ \Leftrightarrow x+2\sqrt{\left(x+2\right)\left(x+3\right)}=0\\ \Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}=-x\)
=>\(x\le0\)
Kết hợp với đk(b)=> không có \(x\ne1\) thỏa mãn pt(1)
Vậy phương trình có nghiệm duy nhất là x=1
a) ta có : \(x^4+3x^3-2x^2+3x+1=0\)
\(\Leftrightarrow x^4-x^3+x^2+4x^3-4x^2+4x+x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)+4x\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2+4x+1\right)\left(x^2-x+1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+4x+1=0\\x^2-x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}-2+\sqrt{3}\\-2-\sqrt{3}\end{matrix}\right.\\x\in\varnothing\end{matrix}\right.\) vậy \(x=-2+\sqrt{3};x=-2-\sqrt{3}\)
b) ta có : \(x^4-2x^3-5x^2+2x+1=0\)
\(\Leftrightarrow x^4+x^3-x^2-3x^3-3x^2+3x-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x^2+x-1\right)-3x\left(x^2+x-1\right)-\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-3x-1\right)\left(x^2+x-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-1=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{3+\sqrt{13}}{2}\\x=\dfrac{3-\sqrt{13}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy \(x=\dfrac{3+\sqrt{13}}{2};x=\dfrac{3-\sqrt{13}}{2};x=\dfrac{-1+\sqrt{5}}{2};x=\dfrac{-1-\sqrt{5}}{2}\)
1.
A có tọa độ là nghiệm hệ: \(\left\{{}\begin{matrix}x-y-2=0\\7x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\Rightarrow A=\left(-1;-3\right)\)
Phương trình đường thẳng AB: \(\dfrac{x+1}{-5}=\dfrac{y+3}{7}\Leftrightarrow7x-5y+22=0\)
Đường thẳng BC đi qua B và vuông góc với AH có phương trình: \(x+7y-22=0\)
\(\begin{cases}x^5-3x^4+2x^2-2x+2\ge0\\x^4-2x^3-x+2=0\\x^2-3x+2=0\\\left(x^2-1\right)\left(x-2\right)=0\end{cases}\) (*)
\(x^5-3x^4+2x^2-2x+2\ge0\) (1)
\(x^4-2x^3-x+2=0\) (2)
\(x^2-3x+2=0\) (3)
\(\left(x^2-1\right)\left(x-2\right)=0\) (4)
Từ
\(x^2-3x+2=0\) (3) \(\Leftrightarrow\) x=1 hoặc x=2
x=1 thỏa mãn tất cả các phương trình, bất phương trình còn lại nên là nghiệm của hệ
x=2 không thỏa mãn (1) nên x=2 không là nghiệm của hệ
Vậy hệ phương trình (*) có nghiệm duy nhất là x=1
1.
ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)
\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)
\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow a^2-3b^2-2ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow a=3b\)
\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)
\(\Leftrightarrow x^2-x=9\left(x+1\right)\)
\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)
2.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:
\(x^3+3\left(x^2-4a^2\right)a=0\)
\(\Leftrightarrow x^3+3ax^2-4a^3=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)
a, ĐKXĐ: ...
\(\sqrt{3x^2-2x+6}+3-2x=0\)
\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)
\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)
\(\Leftrightarrow4x^2-10x+3=0\)
.....
b, ĐKXĐ: ...
\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
Lời giải:
Ta sẽ thử phân tích $x^4-3x^3-x^2+2x-4$ thành nhân tử
Đặt $x^4-3x^3-x^2+2x-4=(x^2+ax+b)(x^2+cx+d)$ với $a,b,c,d$ nguyên.
$\Leftrightarrow x^4-3x^3-x^2+2x-4=x^4+x^3(a+c)+x^2(ac+b+d)+x(ad+bc)+bd$
Đồng nhất hệ số:
\(\left\{\begin{matrix} a+c=-3\\ ac+b+d=-1\\ ad+bc=2\\ bd=-4\end{matrix}\right.\). Từ $bd=-4$ ta xét các TH nguyên của $b,d$ để thay vào tìm $a,c$
Ta tìm được $a=-2;b=-4; c=-1; d=1$
Do đó:
$x^4-3x^3-x^2+2x-4=0$
$\Leftrightarrow (x^2-2x-4)(x^2-x+1)=0$
$\Leftrightarrow x^2-2x-4=0$ (do $x^2-x+1\neq 0$)
$\Leftrightarrow x=1\pm \sqrt{5}$