\(4x^4+4x^3-20x^2+2x+1=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

\(x^4-4x^3-2x^2+4x+1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2-\sqrt{5}\\x=2+\sqrt{5}\end{matrix}\right.\)

2 tháng 6 2021

em                                                                                                                                                                                                            ko

biết

31 tháng 8 2017

\(x^4+2x^3+4x^2+2x+1=0\)

\(\Leftrightarrow\left(x^4+2x^3+x^2\right)+\left(3x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{1}{\sqrt{3}}+\frac{1}{3}+\frac{2}{3}=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+\left(\sqrt{3}x+\frac{1}{\sqrt{3}}\right)^2+\frac{2}{3}=0\)

Ta dễ thấy \(\left(x^2+x\right)^2+\left(\sqrt{3}x+\frac{1}{\sqrt{3}}\right)^2+\frac{2}{3}>0\forall x\)

Do đó pt trên vô nghiệm

NV
24 tháng 6 2019

a/ ĐKXĐ: ....

\(\Leftrightarrow2x^2+2x+4+2x-4=5\sqrt{\left(x-2\right)\left(x^2+x+2\right)}\)

\(\Leftrightarrow2\left(x^2+x+2\right)+2\left(x-2\right)=5\sqrt{\left(x-2\right)\left(x^2+x+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+2}=a\\\sqrt{x-2}=b\end{matrix}\right.\)

\(\Leftrightarrow2a^2+2b^2=5ab\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2\sqrt{x-2}\\2\sqrt{x^2+x+2}=\sqrt{x-2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\left(x-2\right)\\4\left(x^2+x+2\right)=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+10=0\\4x^2+3x+10=0\end{matrix}\right.\)

Phương trình vô nghiệm

NV
24 tháng 6 2019

b/ ĐKXĐ: ....

\(\Leftrightarrow2x^2-x+1=\sqrt{4x^4+4x^2+1-4x^2}\)

\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2+1\right)^2-\left(2x\right)^2}\)

\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)

\(\Leftrightarrow\frac{3}{4}\left(2x^2-2x+1\right)+\frac{1}{4}\left(2x^2+2x+1\right)=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2-2x+1}=a\\\sqrt{2x^2+2x+1}=b\end{matrix}\right.\)

\(\Leftrightarrow3a^2+b^2=4ab\Leftrightarrow3a^2-4ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(3a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\\3\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x+1=2x^2+2x+1\\9\left(2x^2-2x+1\right)=2x^2+2x+1\end{matrix}\right.\)

20 tháng 8 2019

\(\sqrt{4x^2-20x+25}+2x=\sqrt{\left(2x-5\right)^2}+2x=\left|2x-5\right|+2x=5\)

\(+,x< \frac{5}{2}\Rightarrow2x-5< 0\Rightarrow\left|2x-5\right|+2x=5-2x+2x=5\Leftrightarrow5=5\left(ld\right)\)

\(+,x\ge\frac{5}{2}\Rightarrow2x-5\ge0\Rightarrow\left|2x-5\right|=2x-5\Rightarrow\left|2x-5\right|+2x=4x-5=5\Leftrightarrow x=\frac{5}{2}\left(tm\right)\)

\(Vay:x\le\frac{5}{2}\)

AH
Akai Haruma
Giáo viên
11 tháng 11 2017

Lời giải:

Ta có:

\(x^4-2x^3+2x^2+4x-8=0\)

\(\Leftrightarrow x^2(x^2-2)-2x(x^2-2)+4(x^2-2)=0\)

\(\Leftrightarrow (x^2-2)(x^2-2x+4)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\left(1\right)\\x^2-2x+4=0\left(2\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow x^2-2=0\Leftrightarrow x=\pm \sqrt{2}\)

(2)\(\Leftrightarrow x^2-2x+4=0\Leftrightarrow (x-1)^2+3=0\)

(vô lý vì \((x-1)^2+3\geq 3>0\forall x\in\mathbb{R}\) )

Vậy \(x=\pm \sqrt{2}\)

11 tháng 11 2017

=>  x3.x - 2xx2 + 2xx + 4x - 8 = 0 

=> x( x^3 - 2x^2 + 2x + 4 ) - 8 = 0

=> x( xx^2 - 2xx + 2x + 4 ) = 8 

=> x[ x( x^2 - 2x + 2 ) + 4 ] = 8

=> x{ x[ x( x - 2 ) + 2 ] + 4 } = 8

P/s : Không biết nữa , làm đại 

11 tháng 11 2017

\(x^4-2x^3+2x^2+4x-8=0\)

\(\Leftrightarrow\left(x^4-2x^2\right)+\left(-2x^3+4x\right)+\left(4x^2-8\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2-2x+4\right)=0\)

\(\Leftrightarrow x=\pm\sqrt{2}\)