K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2020

 ĐKXĐ: x<=-1,x>=1 

3x2-5=\(\sqrt{x^2-1}\)

3(x2-1)-2=\(\sqrt{x^2-1}\)

Đặt a=\(\sqrt{x^2-1}\),a>=0

3a2-a-2=0

giải ra a=1 =>x

8 tháng 3 2020

ko can nua nhe cac ban

15 tháng 9 2021

\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)

\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)

\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)

5 tháng 9 2023

1) \(\sqrt{x^2+1}=\sqrt{5}\)

\(\Leftrightarrow x^2+1=5\)

\(\Leftrightarrow x^2=5-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow x^2=2^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

2) \(\sqrt{2x-1}=\sqrt{3}\) (ĐK: \(x\ge\dfrac{1}{2}\)

\(\Leftrightarrow2x-1=3\)

\(\Leftrightarrow2x=3+1\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=\dfrac{4}{2}\)

\(\Leftrightarrow x=2\left(tm\right)\)

3) \(\sqrt{43-x}=x-1\) (ĐK: \(x\le43\))

\(\Leftrightarrow43-x=\left(x-1\right)^2\)

\(\Leftrightarrow x^2-2x+1=43-x\)

\(\Leftrightarrow x^2-x-42=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)

4) \(x-\sqrt{4x-3}=2\) (ĐK: \(x\ge\dfrac{3}{4}\))

\(\Leftrightarrow\sqrt{4x-3}=x-2\)

\(\Leftrightarrow4x-3=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4x+4=4x-3\)

\(\Leftrightarrow x^2-8x+7=0\)

\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

5) \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\) (ĐK: \(x\ge0\))

\(\Leftrightarrow\sqrt{x}+3=2\sqrt{x}+2\)

\(\Leftrightarrow2\sqrt{x}-\sqrt{x}=3-2\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1^2\)

\(\Leftrightarrow x=1\left(tm\right)\)

5 tháng 9 2023

1)

\(\sqrt{x^2+1}=\sqrt{5}\\ \Leftrightarrow x^2+1=5\\ \Leftrightarrow x^2=5-1=4\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy PT có nghiệm `x=2` hoặc `x=-2`

2)

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

\(\sqrt{2x-1}=\sqrt{3}\\ \Leftrightarrow2x-1=3\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\left(tm\right)\)

Vậy PT có nghiệm `x=2`

3)

\(ĐKXĐ:x\le43\)

PT trở thành:

\(43-x=\left(x-1\right)^2=x^2-2x+1\\ \Leftrightarrow43-x-x^2+2x-1=0\\ \Leftrightarrow-x^2+x+42=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

Vậy PT có nghiệm `x=-6` hoặc `x=7`

4)

ĐKXĐ: \(x\ge\dfrac{3}{4}\)

PT trở thành:

\(\sqrt{4x-3}=x-2\\ \Leftrightarrow4x-3=\left(x-2\right)^2=x^2-4x+4\\ \Leftrightarrow4x-3-x^2+4x-4=0\\ \Leftrightarrow-x^2+8x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

Vậy PT có nghiệm \(x=1\) hoặc \(x=7\)

5) 

ĐKXĐ: \(x\ge0\)

PT trở thành:

\(\sqrt{x+3}=2\sqrt{x}+2\\ \Leftrightarrow x+3=\left(2\sqrt{x}+2\right)^2=4x+8\sqrt{x}+4\\ \Leftrightarrow x+3-4x-8\sqrt{x}-4=0\\ \Leftrightarrow-3x-8\sqrt{x}-1=0\left(1\right)\)

Đặt \(\sqrt{x}=t\left(t\ge0\right)\)

Khi đó:

(1)\(\Leftrightarrow3t^2+8t+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-4+\sqrt{13}}{3}\left(loại\right)\\t=\dfrac{-4-\sqrt{13}}{3}\left(loại\right)\end{matrix}\right.\)

Vậy PT vô nghiệm.

NV
6 tháng 8 2021

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

NV
6 tháng 8 2021

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

15 tháng 1 2019

Câu 1, \(\left(1\right)\hept{\begin{cases}\sqrt[4]{x^3}+\sqrt[5]{y^3}=35\\\sqrt[4]{x}+\sqrt[5]{y}=5\end{cases}}\)

ĐKXĐ: x > 0

Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\left(a\ge0\right)\\\sqrt[5]{y}=b\end{cases}}\)

Hệ ban đầu trở thành

\(\hept{\begin{cases}a^3+b^3=35\\a+b=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)\left(a^2-ab+b^2\right)=35\\a+b=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5.\left[\left(a+b\right)^2-3ab\right]=35\\a+b=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2-3ab=7\\a+b=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}25-3ab=7\\a+b=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab=6\\a+b=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\left(5-a\right)=6\\b=5-a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5a-a^2=6\\b=5-a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2-5a+6=0\\b=5-a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-3\right)\left(a-2\right)=0\\b=5-a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=3\\b=2\end{cases}\left(h\right)\hept{\begin{cases}a=2\\b=3\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt[4]{x}=3\\\sqrt[5]{y}=2\end{cases}}\left(h\right)\hept{\begin{cases}\sqrt[4]{x}=2\\\sqrt[5]{y}=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=81\\y=32\end{cases}\left(h\right)\hept{\begin{cases}x=16\\y=243\end{cases}}}\)(Thỏa mãn)

Vậy

15 tháng 1 2019

2/ Đặt \(\hept{\begin{cases}\sqrt{x}=a\ge0\\\sqrt{1-x}=b\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a^3+b^3=a+2b\\a^2+b^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)\left(a^2+b^2-ab\right)=a+2b\\a^2+b^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)\left(1-ab\right)=a+2b\\a^2+b^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b\left(a^2+ab+1\right)=0\\a^2+b^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=0\\a^2+b^2=1\end{cases}}\)

5 tháng 4 2020

\(b,\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\) \(Đkxđ:0\le\sqrt{x}\le5\)

Phương trình trên tương đương với:

\(\sqrt{8+t}+\sqrt{5-t}=5\left(\sqrt{x}=t\right)\)

\(\Leftrightarrow13+2\sqrt{\left(8+t\right)\left(5-t\right)}=25\)

\(\Leftrightarrow\sqrt{40-3t-t^2}=6\)

\(\Leftrightarrow t^2+3t-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t_1=1\\t_2=-4\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

Vậy ............

29 tháng 7 2021

Bài 4: 

a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))

\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3

\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)

\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)

\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)

\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)

\(\Leftrightarrow\) \(2x^2+7x+3=0\)

\(\Delta=7^2-4.2.3=25\)\(\sqrt{\Delta}=5\)

Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:

\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)

Vậy ...

Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được

Bài 5: 

a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)

\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)

\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)

Vậy ...

Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\)\(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!

VD1:

a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)

\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)

\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)

Vậy ...

Phần b tương tự nha

c, \(\sqrt{3}x^2-\sqrt{12}=0\)

\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)

\(\Leftrightarrow\) \(x^2=2\)

\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)

Vậy ...

d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)

\(\Leftrightarrow\) \(x-1=5\)

\(\Leftrightarrow\) \(x=6\)

Vậy ...

VD2: 

Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)

b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))

\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(x^2=3\)

\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)

Vậy ...

c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x^2-4x=0\)

\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)

29 tháng 7 2021

cảm ơn bn nhiều nha

25 tháng 6 2021

`A=(sqrtx-1)/(sqrtx+1)-(sqrtx+3)/(sqrtx-2)-(x+5)/(x-sqrtx-2)`

`đk:x>=0,x ne 4`

`A=((sqrtx-1)(sqrtx-2)-(sqrtx+3)(sqrtx+1)-x-5)/(x-sqrtx-2)`

`=(x-3sqrtx+2-x-4sqrtx-3-x-5)/(x-sqrtx-2)`

`=(-x-7sqrtx-6)/(x-sqrtx-2)`

`=(-(sqrtx+1)(sqrtx+6))/((sqrtx+1)(sqrtx-2))`

`=(-(sqrtx+6))/(sqrtx-2)`

25 tháng 6 2021

cảm ơn ạ

14 tháng 10 2021

\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy pt vô nghiệm

\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)

\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

14 tháng 10 2021

a) \(\sqrt{x-5}=\sqrt{3-x}\)

\(\left(\sqrt{x-5}\right)^2=\left(\sqrt{3-x}\right)^2\)

\(x-5=3-x\)

\(x=4\)

b) \(\sqrt{4-5x}=\sqrt{2-5x}\)

\(\left(\sqrt{4-5x}\right)^2=\left(\sqrt{2-5x}\right)^2\)

\(4-5x=2-5x\)

\(2=0\) (Vô lí)

23 tháng 10 2021

\(1,PT\Leftrightarrow2x-1=5\Leftrightarrow x=3\\ 2,\Leftrightarrow x-5=9\Leftrightarrow x=14\\ 3,ĐK:x\ge1\\ PT\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow x=50\left(tm\right)\\ 4,\Leftrightarrow x=\dfrac{\sqrt{50}}{\sqrt{2}}=\dfrac{5\sqrt{2}}{\sqrt{2}}=5\)