Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+x^2+2=y^2-y\)
\(\Leftrightarrow\left(y-x^2-1\right)\left(y+x^2\right)=2\)
a)
\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)
\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)
Bài 1:
Đặt 2x+1=a
Theo đề, ta có: \(\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}=3\)
=>3a^2(a+1)^2=a^2+2a+1+a^2
=>3a^2(a^2+2a+1)-2a^2-2a-1=0
=>3a^4+6a^3+a^2-2a-1=0
=>(a^2+a-1)(3a^2+3a+1)=0
=>\(a\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)
=>\(2x+1\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)
=>\(2x\in\left\{\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)
hay \(x\in\left\{\dfrac{-3+\sqrt{5}}{4};\dfrac{-3-\sqrt{5}}{4}\right\}\)
Đề bài chắc là phương trình nghiệm nguyên. Mình sẽ giải theo nghiệm nguyên.
\(y^2=x^4+x^2+1>x^4\)
\(y^2=x^4+x^2+1< x^4+4x^2+4=\left(x^2+2\right)^2\)
Mà \(x,y\)nguyên nên \(y^2=\left(x^2+1\right)^2\Rightarrow\left(x^2+1\right)^2=x^4+x^2+1\Leftrightarrow x=0\)
\(x=0\Rightarrow y=\pm1\).