K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

\(x^4+2x^3=4x+4\)

\(\Leftrightarrow x^4+2x^3-4x-4=0\)

\(\Leftrightarrow\left(x^4+2x^3+2x^2\right)-\left(2x^2+4x+4\right)=0\)

\(\Leftrightarrow x^2\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow x^2-2=0\) ( Vì : \(x^2+2x+2>0\) )

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)

5 tháng 10 2018

\(x^4+2x^3=4x+4\)

\(\Rightarrow x^4+2x^3+x^2-x^2-4x-4=0\)

\(\Rightarrow\left(x^2+x\right)^2-\left(x+2\right)^2=0\)

\(\Rightarrow\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)=0\)

\(\Rightarrow\left(x^2-2\right)\left(x^2+2x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-2=0\\x^2+2x+2=0\end{cases}}\)

+,\(x^2-2=0\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

+,\(x^2+2x+2=0\Rightarrow\left(x+1\right)^2=-1\)(vô nghiệm)

vậy 

24 tháng 1 2017

a (x+1)(x2-2x+2)(x2+x+1)=0

b (x-1)2(x2+2x+3)=0

...

24 tháng 1 2017

a)\(x^5+x^2+2x+2=0\Leftrightarrow x^2\left(x^3+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow x^2\left(x+1\right)\left(x^2-x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4-x^3+x^2+2\right)=0\)

\(x^4-x^3+x^2+2>0\forall x\)=> x=-1

vậy...

b)\(x^4=4x-3\Leftrightarrow x^4-4x+3=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2+x^2-x-3x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-x^2+2x^2-2x+3x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2x+3\right)=0\)

mà x2+2x+3=(x+1)2+2>0 vs mọi x=> x=1

vậy....

9 tháng 6 2019

a)\(ĐKXĐ:x\ge\frac{-1}{2}\)

 \(\sqrt{x^2+4x+4}=2x+1\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=2x+1\)

\(\Leftrightarrow x+2=2x+1\)

\(\Leftrightarrow-x=-1\)

\(\Leftrightarrow x=1\)

Vậy nghiệm duy nhất của phương trình là 1.

9 tháng 6 2019

b)\(ĐKXĐ:x\ge3\)

 \(\sqrt{4x^2-12x+9}=x-3\)

\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x-3\)

\(\Leftrightarrow2x-3=x-3\)

\(\Leftrightarrow2x=x\)

\(\Leftrightarrow x=0\)(không t/m đkxđ)

Vậy phương trình vô nghiệm

1 tháng 8 2017

\(\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)=72x^2\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-14x+40\right)\left(x^2-13x+40\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40-0,5x\right)\left(x^2-13,5x+40+0,5x\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-\left(0,5x\right)^2-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-72,25x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40+8,5x\right)\left(x^2-13,5x+40-8,5x\right)=0\)

\(\Leftrightarrow\left(x^2-5x+40\right)\left(x^2-22x+40\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+40=0\left(VN\right)\\x^2-22x+40=0\Leftrightarrow\left[{}\begin{matrix}x=20\\x=2\end{matrix}\right.\end{matrix}\right.\)

1 tháng 8 2017

Câu a,c xem lại đề, cách làm giống câu b, còn câu e giống câu d

b) \(2x^4+5x^3+x^2+5x+2=0\)

Ta nhận thấy x=0 không phải là 1 nghiệm của phương trình, chia cả 2 vế của phương trình cho \(x^2\ne0\), ta được:

\(2x^2+5x+1+\dfrac{5}{x}+\dfrac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)+1=0\)

Đặt \(y=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)

\(\Leftrightarrow2\left(y^2-2\right)+5y+1=0\)

\(\Leftrightarrow2y^2+5y-3=0\)

PT đơn giản, tự giải nha, ta được nghiệm y=1/2 và y=-3

Với y=1/2 thì không tìm được x

Với y=-3 thì tìm được 2 nghiệm, tự giải

27 tháng 5 2018

2x4-x3-2x2-x+2=0

\(\Leftrightarrow\)2x4-2x3+x3-x2-x2+x-2x+2 =0

\(\Leftrightarrow\)2x3(x-1)+x2(x-1)-x(x-1)+2(x-1)=0

\(\Leftrightarrow\)(x-1)(2x3+x2-x+2)=0

\(\Leftrightarrow\)(x-1)(x-1)(2x2+3x+2)=0

\(\Leftrightarrow\)(x-1)2(2x2+3x+2)=0

\(\Leftrightarrow\) x-1=0 (do 2x2+3x+2 >0)

\(\Leftrightarrow\)x=1

18 tháng 8 2017

\(x^4-2x^3+3x^2-4x+3=0\)

\(\Leftrightarrow x^4-4x^3+6x^2-4x+1+2x^3-6x^2+6x-2+3x^2-6x+3+1=0\)

\(\Leftrightarrow\left(x-1\right)^4+2\left(x^3-3x^2+3x-1\right)+3\left(x^2-2x+1\right)+1=0\)

\(\Leftrightarrow\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2+1=0\)

Dê thấy: \(\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2+1>0\) (

Hay pt vô nghiệm

18 tháng 8 2017

thanks