Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\dfrac{x+5}{2x-1}+\dfrac{2x-1}{x+5}-2=0\)
\(\Leftrightarrow\left(x+5\right)\left(x+5\right)+\left(2x-1\right)^2-2\left(2x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2+10x+25+4x^2-4x+1-2\left(2x^2+10x-x-5\right)=0\)
\(\Leftrightarrow5x^2+6x+26-4x^2-18x+10=0\)
\(\Leftrightarrow x^2-12x+36=0\)
=>x=6
b: \(\dfrac{9x-27}{2x-7}-\dfrac{8x-28}{x-3}=0\)
\(\Leftrightarrow9\left(x-3\right)^2-4\left(2x-7\right)^2=0\)
\(\Leftrightarrow\left(3x-9\right)^2-\left(4x-14\right)^2=0\)
\(\Leftrightarrow\left(3x-9-4x+14\right)\left(3x-9+4x-14\right)=0\)
\(\Leftrightarrow\left(5-x\right)\left(7x-23\right)=0\)
hay \(x\in\left\{5;\dfrac{23}{7}\right\}\)
a) \(x^5-27+x^3-27x^2\) = 0
\(\Leftrightarrow x^3\left(x^2+1\right)-27\left(x^2+1\right)\)= 0
\(\Leftrightarrow\left(x^2+1\right)\left(x^3-27\right)=0\)
\(\Leftrightarrow x^3-27=0\) (Vì \(x^2+1>0\))
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+2\dfrac{3}{2}x+\dfrac{9}{4}+\dfrac{27}{4}\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{27}{4}\right]=0\)
\(\Leftrightarrow x-3=0\) (Vì \(\left(x+\dfrac{3}{2}\right)^2+\dfrac{27}{4}>0\))
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của phương trình là S = {3}
b)\(x^3-9x^2+19x-11=0\)
\(\Leftrightarrow\left(x^3-x^2\right)-\left(8x^2-8x\right)+\left(11x-11\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-8x+11\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2-\left(4+\sqrt{5}\right)x-\left(4-\sqrt{5}\right)x+11\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left\{x\left[x-\left(4+\sqrt{5}\right)\right]-\left(4-\sqrt{5}\right)\left[x-\left(4+\sqrt{5}\right)\right]\right\}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4-\sqrt{5}\right)\left(x-4+\sqrt{5}\right)=0\)
\(\Leftrightarrow x-1=0\) hoặc \(x-4-\sqrt{5}=0\) hoặc \(x-4+\sqrt{5}=0\)
\(\Leftrightarrow x=1\) hoặc \(x=4+\sqrt{5}\) hoặc \(x=4-\sqrt{5}\)
Vậy phương trình có tập nghiệm là \(S=\left\{1;4+\sqrt{5};4-\sqrt{5}\right\}\)
d) x2(x−3)+27−9x=0
x2 (x - 3) + 27 - 9x = 0
x2 ( x - 3 ) +( 27 - 9x) = 0
x2 ( x - 3) + 9 ( 3 - x ) = 0
x2 ( x - 3) + 9 \(\left[-\left(x-3\right)\right]\) = 0
x2 ( x - 3) - 9 ( x - 3) = 0
(x - 3 )( x2 - 9) = 0
(x - 3) ( x-3) ( x + 3) = 0
(x - 3)2 ( x + 3) = 0
\(\Rightarrow\) x - 3 = 0 hoặc x+ 3 =0
+) x - 3 = 0 \(\Rightarrow\) x = 0+ 3=3
+) x+3= 0 \(\Rightarrow\) x = 0-3 = -3
Vậy: x= 3 hoặc x= -3
1)
\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)
\(\Leftrightarrow x=105\)
b)
\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)
\(\Leftrightarrow50-x=0\)
\(\Leftrightarrow x=50\)
2)
\(\left(5x+1\right)^2=\left(3x-2\right)^2\)
\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)
b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)
\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)
\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)
\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)
\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
a) \(\left(x+2\right)^2-\left(x+4\right)^2=0\)
\(\Rightarrow\left(x+2-x-4\right)\left(x+2+x+4\right)=0\)
\(\Rightarrow\left(-2\right)\left(2x+6\right)=0\)
\(\Rightarrow\left(-2\right).2.\left(x+3\right)=0\)
\(\Rightarrow x+3=0\) (vì \(-4\ne0\) )
\(\Rightarrow x=-3\)
Vậy \(x=-3\) (câu này mk có sửa đề ko biết có đúng ko !!!)
b) \(\left(x-3\right)^2-9=0\Rightarrow\left(x-3\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=3^2\\\left(x-3\right)^2=\left(-3\right)^2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=0\end{matrix}\right.\)
Vậy \(x=6\) hoặc \(x=0\)
c) \(x^2+6x+9=0\Rightarrow\left(x+3\right)^2=0\)
\(\Rightarrow x+3=0\Rightarrow x=-3\)
Vậy \(x=-3\)
d) \(-x^3+9x^2-27x+27=0\)
\(\Rightarrow-\left(x^3-9x^2+27x-27\right)=0\)
\(\Rightarrow-\left(x-3\right)^3=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
1)3.x^2 - 75 = 0
3.x^2 - 3.25 = 0
3.(x^2-25)=0
x^2-5^2=0
(x-5)(x+5)=0
=> x-5=0 hoặc x+5=0
=> x=5 hoặc x=-5
1) \(3x^2-75=0\)
\(\Leftrightarrow3\left(x^2-25\right)=0\)
\(\Leftrightarrow x^2-25=0\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=\pm\sqrt{25}=\pm5\)
2) \(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
3) \(x^3+3x^2+3x=0\)
\(\Leftrightarrow x^3+3x^2+3x+1=1\)
\(\Leftrightarrow\left(x+1\right)^3=1^3\)
\(\Leftrightarrow x+1=1\Leftrightarrow x=0\)
Không chép lại đề nhé:
\(1A=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(=\frac{x+3}{x^2+9}.\frac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}\)
\(=\frac{x+3}{x-3}\)
b/ Với x > 0 thì P không xác định khi x = 3 (vì mẫu sẽ = 0)
c/ \(A=\frac{x+3}{x-3}=1+\frac{6}{x-3}\)
Để A nguyên thì (x - 3) phải là ước nguyên của 6 hay
(x - 3) \(\in\)(- 1; - 2; - 3, - 6; 1; 2; 3; 6)
Thế vào sẽ tìm được A
ĐKXĐ thì b tự làm nhé
a: \(\Leftrightarrow\left(\dfrac{1}{3}x-1\right)^3=\left(\dfrac{1}{5}x-1\right)^3\)
=>1/3x-1=1/5x-1
=>2/15x=0
hay x=0
b: Đặt 2x+1=a; 3x-1=b
Theo đề, ta có \(\left(a+b\right)^3-a^3-b^3=0\)
=>3ab(a+b)=0
=>5x(2x+1)(3x-1)=0
hay \(x\in\left\{0;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)
c: Đặt x-3=a; x+1=b
Theo đề, ta có: \(\left(a+b\right)^3=a^3+b^3\)
=>3ab(a+b)=0
=>(x-3)(x+1)(2x-2)=0
hay \(x\in\left\{3;-1;1\right\}\)
<=> x^3 + x - 30 = 0
<=> x^3 - 3x^2 + 3x^2 - 9x + 10x - 30 = 0
<=> x^2(x-3) + 3x(x-3) + 10(x-3)=0
<=> (x-3)(x^2+3x+10) = 0
<=> x = 3 (vì x^2 + 3x + 10 > 0)
\(x^3+9x^2+27x+27=x^3+3x^2+6x^2+18x+9x+27=x^2\left(x+3\right)+6x\left(x+3\right)+9\left(x+3\right)\)
\(=\left(x^2+6x+9\right)\left(x+3\right)=\left(x+3\right)^2\left(x+3\right)=\left(x+3\right)^3=0\)
=>x+3=0=>x=-3