Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy x=0 không là nghiệm của phương trình
chia cả 2 vế cho x^2 ta được:
PT <=> x^2-3x-6+3/x+1/(x^2)=0
<=> (x^2-2+1/(x^2))-3(x-1/x)-4=0
<=> (x-1/x)^2-3(x-1/x)-4=0
Đặt x-1/x=y
PT <=> y^2-3y-4=0
<=> y=-4 hoặc y=1
Tại y=-4 , ta có x+1/x+4=0
<=> x^2+4x+1=0
<=> x=-2+ √3 hoăc x=-2- √ 3
Tại y=1 ta có x^2-x-1=0
<=> x=(1- √ 5)/2 hoặc x=(1+ √5)/2
1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)
\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)
\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)
\(x^3-3x^2-3x-4=0\)
\(\Leftrightarrow x^3-3x^2-4x+x-4=0\)
\(\Leftrightarrow x\left(x^2-3x-4\right)+x-4=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x-4\right)+x-4=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x^2+x+1=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=4\)
\(ĐK:-\dfrac{1}{3}\le x\le2\\ PT\Leftrightarrow\left(\sqrt{3x+1}-2\right)-x+1-\sqrt{2-x}\left(\sqrt{2-x}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-1\right)}{\sqrt{3x+1}+2}-\left(x-1\right)-\dfrac{\sqrt{2-x}\left(1-x\right)}{\sqrt{2-x}+1}=0\\ \Leftrightarrow\left(x-1\right)\left(\dfrac{3}{\sqrt{3x+1}+2}+\dfrac{\sqrt{2-x}}{\sqrt{2-x}+1}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\\dfrac{3}{\sqrt{3x+1}+2}+\dfrac{\sqrt{2-x}}{\sqrt{2-x}+1}-1=0\end{matrix}\right.\)
Với \(x\ge-\dfrac{1}{3}\) thì \(\dfrac{3}{\sqrt{3x+1}+2}+\dfrac{\sqrt{2-x}}{\sqrt{2-x}+1}-1>0\)
Vậy pt có nghiệm duy nhất \(x=1\)
ĐKXĐ: \(-\dfrac{1}{3}\le x\le2\)
\(\sqrt{3x+1}=3-\sqrt{2-x}\) (do \(-\dfrac{1}{3}\le x\le2\Rightarrow3-\sqrt{2-x}\ge3-\sqrt{2+\dfrac{1}{3}}>0\))
\(\Leftrightarrow3x+1=9+2-x-6\sqrt{3-x}\)
\(\Leftrightarrow3\sqrt{2-x}=5-2x\)
\(\Leftrightarrow9\left(2-x\right)=\left(5-2x\right)^2\)
\(\Leftrightarrow4x^2-11x+7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{4}\end{matrix}\right.\) (thỏa mãn)
Lời giải:
ĐKXĐ: $x\geq -1$
Đặt $\sqrt{x+1}=a(a\geq 0)$ thì PT trở thành:
$x^3-3x(x+1)+2\sqrt{(x+1)^3}=0$
$\Leftrightarrow x^3-3xa^2+2a^3=0$
$\Leftrightarrow (x^3-xa^2)-(2xa^2-2a^3)=0$
$\Leftrightarrow x(x-a)(x+a)-2a^2(x-a)=0$
$\Leftrightarrow (x-a)(x^2+ax-2a^2)=0$
$\Leftrightarrow (x-a)[(x+a)(x-a)+a(x-a)]=0$
$\Leftrightarrow (x-a)^2(x+2a)=0$
Nếu $x-a=0$
$\Rightarrow x^2=a^2\Leftrightarrow x^2=x+1$
$\Rightarrow x=\frac{1\pm \sqrt{5}}{2}$. Vì $x=a\geq 0$ nên $x=\frac{1+\sqrt{5}}{2}$
Nếu $x+2a=0$
$\Rightarrow x^2=4a^2\Leftrightarrow x^2=4(x+1)$
$\Rightarrow x=2\pm 2\sqrt{2}$. Mà $x=-2a\leq 0$ nên $x=2-2\sqrt{2}$
Vậy..........
ĐKXĐ: ...
\(\Leftrightarrow x^3-3x\left(x+1\right)+2\sqrt{\left(x+1\right)^3}=0\)
Đặt \(\left\{{}\begin{matrix}x=a\\\sqrt{x+1}=b\end{matrix}\right.\)
\(\Rightarrow a^3-3ab^2+2b^3=0\)
\(\Leftrightarrow\left(a+2b\right)\left(a-b\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}2b=-a\\a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=-x\left(x\le0\right)\\x=\sqrt{x+1}\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-4=0\\x^2-x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2-2\sqrt{2}\\x=\frac{1+\sqrt{5}}{2}\end{matrix}\right.\)
\(3x^2+\sqrt{2}x-3+\sqrt{2}=0\)
Ta có \(a-b+c=3-\sqrt{2}-3+\sqrt{2}=0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=-1\)
\(x_2=-\dfrac{-3+\sqrt{2}}{3}=\dfrac{3-\sqrt{2}}{3}\)
ví dụ x âm thì sao căn x2 bằng x được em?
\(\sqrt{3x^2}-\left(1-\sqrt{3}\right)x-1=0\)
\(\Leftrightarrow\sqrt{3}x-x-\sqrt{3}x-1=0\)
\(\Leftrightarrow-x-1=0\)
\(\Leftrightarrow-x=1\)
\(\Leftrightarrow x=-1\)
Bậc 3 ngán lắm:
x(x^2+3)
Phân h con 364 xem
364=4.91=7.4.13.=7.52=7(7^2+3)
ok! x= 7 là nghiệm
\(x^3+3x-364=\left(x-7\right)\left(x^2+7x+52\right)\)
\(\orbr{\begin{cases}x=7\\x^2+7x+\frac{49}{4}=\frac{49}{4}-52< 0\left(VN\right)\end{cases}}\)
x= 7 duy nhất
Hàm bậc 3 (bậc cao) ở mức độ ptth kiểu gì cũng có nghiệm hũu tỷ, các bài nghiệm vô tỷ -->lỗi nhỏ của người ra đề hoặc người chép lại đề cố tình sửa hệ số đi.