\(x^3-3\sqrt{2}x^2+3x+\sqrt{2}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

\(pt\Leftrightarrow x^3-\sqrt{2}.x^2-2\sqrt{2}.x^2+4x-x+\sqrt{2}=0\)

\(\Leftrightarrow x^2\left(x-\sqrt{2}\right)-2\sqrt{2}x\left(x-\sqrt{2}\right)-\left(x-\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x^2-2\sqrt{2}x-1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x^2-2\sqrt{2}x+2-3\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)[\left(x-\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2]=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x-\sqrt{2}-\sqrt{3}\right)\left(x-\sqrt{2}+\sqrt{3}\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=\sqrt{2}\\x=\sqrt{2}+\sqrt{3}\\x=\sqrt{2}-\sqrt{3}\end{cases}}\)

7 tháng 5 2018

\(x=\sqrt{2}-\sqrt{3}\) nữa nhé!

31 tháng 8 2017

ai giải hộ với nhanh cái mk sắp đi học òi

2 tháng 9 2017

thui chữa òi ko cần làm đâu

23 tháng 8 2019

Liên hợp:v

a) ĐK: \(x\ge-2\)

PT<=> \(\sqrt{x+5}-2+\sqrt{x+2}-1+2\left(x+1\right)=0\)

\(\Leftrightarrow\frac{x+1}{\sqrt{x+5}+2}+\frac{x+1}{\sqrt{x+2}+1}+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{x+5}+2}+\frac{1}{\sqrt{x+2}+1}+2\right)=0\)

Cái ngoặc to nhìn sơ qua cũng thấy nó >0 :v

Do đó x = -1

Vậy...

P/s: cô @Akai Haruma check giúp em ạ!

23 tháng 8 2019

Nguyễn Việt Lâm, svtkvtm, Trần Thanh Phương, Phạm Hoàng Hải Anh, DƯƠNG PHAN KHÁNH DƯƠNG, @Akai Haruma

11 tháng 7 2018

a) \(\sqrt{x^2-16}-3\sqrt{x-4}=0\)

\(\Leftrightarrow\sqrt{x^2-16}=3\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x^2-16}=\sqrt{9x-36}\)

\(\Leftrightarrow x^2-16=9x-36\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)-9x+36=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)-9\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

vậy ...

24 tháng 8 2019

a, \(5\sqrt{2x^2+3x+9}=2x^2+3x+3\) (*)

Đặt \(2x^2+3x=a\left(a\ge-9\right)\)

=> \(5\sqrt{a+9}=a+3\)

<=> \(25\left(a+9\right)=a^2+6a+9\)

<=> \(25a+225=a^2+6a+9\)

<=> \(0=a^2+6a+9-25a-225=a^2-19a-216\)

<=> 0= \(a^2-27a+8a-216\)

<=> \(\left(a-27\right)\left(a+8\right)=0\)

=> \(\left[{}\begin{matrix}a=27\\a=-8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}2x^2+3x=27\\2x^2+3x=-8\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x^2+3x-27=0\\2x^2+3x+8=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}\left(x-3\right)\left(2x+9\right)=0\\2\left(x^2+2.\frac{3}{4}+\frac{9}{16}\right)+\frac{55}{8}=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\frac{9}{2}\left(tm\right)\\2\left(x+\frac{3}{4}\right)^2=-\frac{55}{8}\left(ktm\right)\end{matrix}\right.\)

Vậy pt (*) có tập nghiệm \(S=\left\{3,-\frac{9}{2}\right\}\)

b, \(9-\sqrt{81-7x^3}=\frac{x^3}{2}\left(đk:x\le\sqrt[3]{\frac{81}{7}}\right)\)(*)

<=> \(\sqrt{81-7x^3}=9-\frac{x^3}{2}\)

<=>\(81-7x^3=\left(9-\frac{x^3}{2}\right)^2=81-9x^3+\frac{x^6}{4}\)

<=> \(-7x^3+9x^3-\frac{x^6}{4}=0\) <=> \(2x^3-\frac{x^6}{4}=0\)<=> \(8x^3-x^6=0\)

<=> \(x^3\left(8-x^2\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\8=x^2\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=0\left(tm\right)\\x=\pm2\sqrt{2}\left(ktm\right)\end{matrix}\right.\)

Vậy pt (*) có nghiệm x=0

24 tháng 8 2019

d,\(\sqrt{9x-2x^2}-9x+2x^2+6=0\) (*) (đk: \(0\le x\le\frac{1}{2}\))

<=> \(\sqrt{9x-2x^2}-\left(9x-2x^2\right)+6=0\)

Đặt \(\sqrt{9x-2x^2}=a\left(a\ge0\right)\)

\(a-a^2+6=0\)

<=> \(a^2-a-6=0\) <=> \(a^2-3x+2x-6=0\)

<=> \(\left(a-3\right)\left(a+2\right)=0\)

=> \(a-3=0\) (vì a+2>0 vs mọi \(a\ge0\))

<=> a=3 <=>\(\sqrt{9x-2x^2}=3\) <=> \(9x-2x^2=9\)

<=> 0=\(2x^2-9x+9\) <=> \(2x^2-6x-3x+9=0\) <=>\(\left(2x-3\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}2x=3\\x=3\end{matrix}\right.< =>\left[{}\begin{matrix}x=\frac{3}{2}\\x=3\end{matrix}\right.\)(t/m)

Vậy pt (*) có tập nghiệm \(S=\left\{\frac{3}{2},3\right\}\)

6 tháng 8 2019

a) \(\sqrt{2}.x^2=\sqrt{98}\Rightarrow x^2=7\Rightarrow x=\sqrt{7}\)

d)\(3\sqrt{x}-5-18=0\Rightarrow3\sqrt{x}=23\)

\(\sqrt{x}=\frac{23}{3}\Rightarrow x=\left(\frac{23}{3}\right)^2\)

NV
16 tháng 3 2019

a/ \(\Delta=\left(3\sqrt{3}\right)^2-4.4\left(-6\right)=123\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3\sqrt{3}+\sqrt{123}}{8}\\x_2=\frac{3\sqrt{3}-\sqrt{123}}{8}\end{matrix}\right.\)

b/ \(\Delta=9-4\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)=25\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3+\sqrt{25}}{2\left(1-\sqrt{5}\right)}=-1-\sqrt{5}\\x_2=\frac{3-\sqrt{25}}{2\left(1-\sqrt{5}\right)}=\frac{1+\sqrt{5}}{4}\end{matrix}\right.\)

16 tháng 3 2019

\(a)4x^2-3\sqrt{3}x-6=0\)

Có: \(a=4;b=-3\sqrt{3};c=-6\)

\(\Delta=b^2-4ac\\ =\left(-3\sqrt{3}\right)^2-4.4.\left(-6\right)\\ =123>0\)

Phương trình có 2 nghiệm phân biệt:

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\sqrt{3}\right)+\sqrt{123}}{2.4}=\frac{3\sqrt{3}+\sqrt{123}}{8}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\sqrt{3}\right)-\sqrt{123}}{2.4}=\frac{3-\sqrt{123}}{8}\)

\(b)\left(1-\sqrt{5}\right)x^2-3x+\sqrt{5}+1=0\)

Có: \(a=1-\sqrt{5};b=-3;c=\sqrt{5}+1\)

\(\Delta=b^2-4ac\\ =\left(-3\right)^2-4.\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\\ =25>0\)

Phương trình có 2 nghiệm phân biệt:

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)+\sqrt{25}}{2\left(1-\sqrt{5}\right)}=-1-\sqrt{5}\\ x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)-\sqrt{25}}{2\left(1-\sqrt{5}\right)}=\frac{1+\sqrt{5}}{4}\)