\(\sqrt{98-35x+6x^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

a) \(x^2-6x+26=6\sqrt{2x+1}\) (ĐKXĐ : \(x\ge-\frac{1}{2}\) )

\(\Leftrightarrow x^2-6x+26-6\sqrt{2x+1}=0\)

\(\Leftrightarrow\left(x^2-6x+8\right)-\left(6\sqrt{2x+1}-18\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-6\left(\sqrt{2x+1}-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-6\left(\frac{2x+1-9}{\sqrt{2x+1}+3}\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-\frac{12\left(x-4\right)}{\sqrt{2x+1}+3}=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-2-\frac{12}{\sqrt{2x+1}+3}\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-2-\frac{12}{\sqrt{2x+1}+3}=0\end{array}\right.\)

Với x - 4 = 0 => x = 4 (TMĐK)

Với \(x-2-\frac{12}{\sqrt{2x+1}+3}=0\Rightarrow x=4\left(TM\right)\)

Vậy phương trình có nghiệm x = 4

b) \(x+\sqrt{2x-1}=3+\sqrt{x+2}\) ( ĐKXĐ : \(x\ge\frac{1}{2}\))

\(x+\sqrt{2x-1}-3-\sqrt{x+2}=0\)

\(\Leftrightarrow\left(\sqrt{2x-1}-\sqrt{5}\right)-\left(\sqrt{x+2}-\sqrt{5}\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\frac{2x-1-5}{\sqrt{2x-1}+\sqrt{5}}-\frac{x+2-5}{\sqrt{x+2}+\sqrt{5}}+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x-1}+\sqrt{5}}-\frac{1}{\sqrt{x+2}+\sqrt{5}}+1\right)=0\)

Vì \(x\ge\frac{1}{2}\) nên  \(\frac{2}{\sqrt{2x-1}+\sqrt{5}}-\frac{1}{\sqrt{x+2}+\sqrt{5}}+1>0\) . Do đó x-3 = 0 => x = 3 (TMĐK)

Vậy phương trình có nghiệm x = 3

NV
20 tháng 11 2019

ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow x^2-4x+4-2x+1+2\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\left(x-2\right)^2-\left(2x-1-2\sqrt{2x-1}+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2-\left(\sqrt{2x-1}-1\right)^2=0\)

\(\Leftrightarrow\left(x-3+\sqrt{2x-1}\right)\left(x-1-\sqrt{2x-1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x-1}=3-x\left(x\le3\right)\\\sqrt{2x-1}=x-1\left(x\ge1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x^2-6x+9\\2x-1=x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-8x+10=0\\x^2-4x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4+\sqrt{6}\left(l\right)\\x=4-\sqrt{6}\\x=2+\sqrt{2}\\x=2-\sqrt{2}\left(l\right)\end{matrix}\right.\)

24 tháng 2 2021

thôi thôi

24 tháng 2 2021

help me pls 

               cho hàm số y=-3x2

          a) vẽ parabol

          b) tìm điểm trên đồ thị (P) có hoành độ =2 

                                                       tung độ = -27

          c) hàm số đồng/nghịch biến khi nào ?

          d) tìm tọa độ giao điểm của đồ thị (P) và đường thẳng y= -2V3x+1

hok tốt !

17 tháng 2 2022

6 

HT 

@@@@@@@

@

29 tháng 8 2019

a) ĐK: \(x\inℝ\).

Đặt \(\sqrt{x^2-3x+4}=a>0\)

\(x^2-5x+4-\left(2x-1\right)a=0\)

\(\Leftrightarrow a^2-\left(2x-1\right)a-2x=0\)

\(\Leftrightarrow-\left(a+1\right)\left(2x-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-1\left(L\right)\\2x=a\left(C\right)\end{cases}}\)

Xét \(2x=a\Leftrightarrow\hept{\begin{cases}x>0\\a^2=4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\-3x^2-3x+4=0\end{cases}}\Leftrightarrow x=\frac{-3+\sqrt{57}}{6}\) ( đã loại 1 nghiệm vì ko t/m x> 0)

P/s: em ko chắc:v

NV
10 tháng 7 2020

\(p+q=0\Rightarrow q=-p\)

\(\Rightarrow x^2+px-p=0\) (1)

Do nghiệm pt là nguyên nên delta là SCP hay \(\Delta=p^2+4p=k^2\)

\(\Leftrightarrow\left(p+2\right)^2-4=k^2\Rightarrow\left(p+2\right)^2-k^2=4\)

\(\Rightarrow\left(p+2-k\right)\left(p+2+k\right)=4\)

Pt ước số cơ bản, bạn tự tính p sau đó thay vào (1) giải ra x, cái nào nguyên thì nhận

b/ \(\Leftrightarrow\sqrt{\left(3-x\right)^2}+\sqrt{\left(x+5\right)^2}=8\)

\(\Leftrightarrow\left|3-x\right|+\left|x+5\right|=8\)

Mặt khác ta có \(\left|3-x\right|+\left|x+5\right|\ge\left|3-x+x+5\right|=8\)

Dấu "=" xảy ra khi và chỉ khi \(\left(3-x\right)\left(x+5\right)\ge0\)

\(\Rightarrow-5\le x\le3\)

\(\Rightarrow\) Nghiệm của pt đã cho là \(-5\le x\le3\)

b) Ta có: \(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)

\(\Leftrightarrow\left|x-3\right|+\left|x+5\right|=8\)(*)

Trường hợp 1: x<-5

(*)\(\Leftrightarrow3-x-x-5=8\)

\(\Leftrightarrow-2-2x=8\)

\(\Leftrightarrow-2\left(1+x\right)=8\)

\(\Leftrightarrow1+x=-4\)

hay x=-5(loại)

Trường hợp 2: -5≤x≤3

(*)\(\Leftrightarrow3-x+x+5=8\)

\(\Leftrightarrow8=8\)

hay x∈[-5;3]

Trường hợp 2: x>3

(*)\(\Leftrightarrow x-3+x+5=8\)

\(\Leftrightarrow2x+2=8\)

\(\Leftrightarrow2x=6\)

hay x=3(loại)

Vậy: S=[-5;3]