K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x^2+x+1\right)\left(x^2+x+2\right)=2\)

\(x^4+x^3+2x^2+x^3+x^2+2x+x^2+x+2=2\)

\(x^4+2x^3+4x^2+3x=0\)

\(x\left(x^3+2x^2+4x+3\right)=0\)

\(x=0\)( để đó ko quên mất )

\(x^3+2x^2+4x+3=0\)

\(\left(x^2+x+3\right)\left(x+1\right)=0\)

\(x=1\)

Vậy \(x=\left\{0;1\right\}\)

Nháp : \(\Delta=b^2-4ac=1^2-4.1.3=1-12=-11< 0\)

Nên pt vô nghiệm 

AH
Akai Haruma
Giáo viên
15 tháng 6 2023

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo). Viết đề thế này khó đọc lắm.

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}

13 tháng 3 2016

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

13 tháng 4 2021

\(\left(x+1\right)\left(x+2\right)=\left(2-x\right)\left(x+2\right)\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-\left(2-x\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1-2+x\right)=0\Leftrightarrow\left(x+2\right)\left(2x-1\right)=0\Leftrightarrow x=-2;x=\dfrac{1}{2}\)

Vậy tập nghiệm của phương trình là S = { -2 ; 1/2 } 

Ta có: \(\left(x+1\right)\left(x+2\right)=\left(2-x\right)\left(x+2\right)\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-\left(2-x\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1-2+x\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-2;\dfrac{1}{2}\right\}\)

Bạn xem lại đề, vế phải đâu rồi bạn?

19 tháng 3 2021

Ừ quên ha

7 tháng 2 2021

ĐKXĐ : \(x\ne\pm1\)

PT : \(\Leftrightarrow\dfrac{x-1-x^2-x+2}{x+1}=\dfrac{x+1-\left(x+2\right)\left(x-1\right)}{x-1}\)

\(\Leftrightarrow\dfrac{1-x^2}{x+1}=1-x=\dfrac{3-x^2}{x-1}\)

\(\Leftrightarrow x^2-3=\left(x-1\right)^2=x^2-2x+1\)

\(\Leftrightarrow-2x=-4\)

\(\Leftrightarrow x=2\left(TM\right)\)

Vậy ...

ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(\dfrac{x-1}{x+1}-\dfrac{x^2+x-2}{x+1}=\dfrac{x+1}{x-1}-x-2\)

\(\Leftrightarrow\dfrac{x-1-x^2-x+2}{x+1}-\dfrac{x+1}{x-1}+x+2=0\)

\(\Leftrightarrow\dfrac{-x^2+1}{x+1}-\dfrac{x+1}{x-1}+x+2=0\)

\(\Leftrightarrow\dfrac{-\left(x^2-1\right)}{x+1}-\dfrac{x+1}{x-1}+x+2=0\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)\left(x+1\right)}{x+1}-\dfrac{x+1}{x-1}+x+2=0\)

\(\Leftrightarrow-\left(x-1\right)-\dfrac{x+1}{x-1}+x+2=0\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2}{x-1}-\dfrac{x+1}{x-1}+\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=0\)

Suy ra: \(-\left(x^2-2x+1\right)-x-1+x^2-x+2x-2=0\)

\(\Leftrightarrow-x^2+2x-1-x-1+x^2+x-2=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow2x=4\)

hay x=2(nhận)

Vậy: S={2}

\(\dfrac{x-1}{x-2}+\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow x^2+x-2+5x-10=12+x^2-4\)

\(\Leftrightarrow6x-12=8\)

=>6x=20

hay x=10/3(nhận)

3 tháng 3 2022

x−1x−2+5x+2=12x2−4+1x−1x−2+5x+2=12x2−4+1

⇔x2+x−2+5x−10=12+x2−4⇔x2+x−2+5x−10=12+x2−4

⇔6x−12=8⇔6x−12=8

=>6x=20

hay x=10/3(nhận)

Sửa đề: \(\left(x-1\right)^2-\left(3x+2\right)\left(x-12\right)=\left(x^2+1\right)\left(x-2\right)-x^2\)

\(\Leftrightarrow x^3-3x^2+3x-1-\left(3x^2-36x+2x-24\right)=x^3-2x^2+x-2-x^2\)

=>\(x^3-3x^2+3x-1-3x^2+34x+24=x^3-3x^2+x-2\)

=>\(x^3-6x^2+37x+23-x^3+3x^2-x+2=0\)

=>\(-3x^2+36x+25=0\)

=>\(x=\dfrac{18\pm\sqrt{399}}{3}\)