![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
https://coccoc.com/search/math#query=gi%E1%BA%A3i+pt+(2x-2)%2F(x%5E2-36)+-+(x-2)%2F(x%5E2-6x)+%3D+(x-1)%2F(x%5E2%2B6x)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
HPT : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{5}{36}\\\frac{4}{x}+\frac{3}{y}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{3}{x}+\frac{3}{y}=\frac{5}{12}\left(1\right)\\\frac{4}{x}+\frac{3}{y}=\frac{1}{2}\left(2\right)\end{cases}}\)
Từ (1) và (2), lấy vế trừ vế ta được :
\(\Leftrightarrow\left(\frac{4}{x}+\frac{3}{y}\right)-\left(\frac{3}{x}+\frac{3}{y}\right)=\frac{1}{2}-\frac{5}{12}\)
\(\Leftrightarrow\frac{1}{x}=\frac{1}{12}\)
\(\Leftrightarrow\frac{1}{y}=\frac{5}{36}-\frac{1}{x}=\frac{5}{36}-\frac{1}{12}=\frac{1}{18}\)
\(\Leftrightarrow\hept{\begin{cases}x=12\\y=18\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+x+12\sqrt{x+1}=36\left(x\ge-1\right)\)
\(< =>x\left(x+1\right)+12\sqrt{x+1}=36\)
Đặt \(\sqrt{x+1}\Rightarrow t\left(t\ge0\right)\)thì ta được :
\(x.t^2+12t-36=0\)
Xét \(\Delta=144+144x\)
Với \(x=-1\)thì phương trình có duy nhất 1 nghiệm là : \(6\)
Với \(x=0\)thì phương trình có 2 nghiệm phân biệt :
\(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{144}}{2x}\\x_2=\frac{-12-\sqrt{144}}{2x}\end{cases}\left(đk:x\ne0\right)}\)(do x=0 nên không tm đk)
Với \(x>0\)cái này thì xét delta rồi so với đk là được
Vậy nghiệm của phương trình trên là ...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+2x+1-\left(x+1\right)+2\sqrt{x+1}.6-36=0\)
\(\left(x+1\right)^2-\left(\sqrt{x+1}-6\right)^2=0\)
\(\left(x-\sqrt{x+1}+7\right)\left(x+\sqrt{x+1}-5\right)=0\)
\(\left[{}\begin{matrix}x-\sqrt{x+1}+7=0\\x+\sqrt{x+1}-5=0\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\frac{\left(x+a\right)\left(3a^2x^2+a^2+8ax+x^2+3\right)\left(3a^6x^6+27a^6x^4+33a^6x2+a^6+72a^5x^5+24a^5x^3+72a^{5x}+27a^4x^6+459a^4x^4+441a^4x^2+33a^4+240a^3x^5+800a^3x^3+240a^3x+33a^2x^6+441a^2x^4+459x^2a^2+27a^2+75ax^5+240ax^3+72ax+x^6+33x^4+27x^2+3\right)}{\left(a^2+3\right)\left(a^6+33a^4+27a^{2+3}\right)\left(x^{2+3}\right)\left(x^6+33x^4+27x^2+3\right)}=0\)
mấy nhân tử sau ko cần chú ý đâu :)) chỉ cần chú ý đến x+a=0 <=>x=-a thôi :))
bài này đúng 100% nhé chỉ sợ gõ sai thôi, ko tin có thể dùng máy tính kiểm tra
(x+2)(x+1)(x-3)(x+6)=-36
<=>(x2+3x+2)(x2+3x-18)=-36
Đặt x2+3x+2=a =>a(a-20)+36=0
<=>(a-2)(a-18)=0
<=>\(\orbr{\begin{cases}a=2\\a=18\end{cases}}\)
Đến đây tự giải tiếp