K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2017

Để \(\left(x-1990\right)\left(2003-x\right)>0\)

Suy ra x-1990 và 2003-x cùng dấu

  • Xét \(\hept{\begin{cases}x-1990>0\\2003-x>0\end{cases}\Rightarrow}\hept{\begin{cases}x>1990\\x< 2003\end{cases}}\) (thỏa mãn)
  • Xét \(\hept{\begin{cases}x-1990< 0\\2003-x< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1990\\x>2003\end{cases}}\) (loại(

Vậy

10 tháng 1 2016

Ta có: \(\frac{x-5}{1990}+\frac{x-15}{1980}=\frac{x-1980}{15}+\frac{x-1990}{5}\)

=> \(\left(\frac{x-5}{1990}-1\right)+\left(\frac{x-15}{1980}-1\right)=\left(\frac{x-1980}{15}-1\right)+\left(\frac{x-1990}{5}-1\right)\)

=> \(\frac{x-5-1990}{1990}+\frac{x-15-1980}{1980}=\frac{x-1980-15}{15}+\frac{x-1990-5}{5}\)

=> \(\frac{x-1995}{1990}+\frac{x-1995}{1980}=\frac{x-1995}{15}+\frac{x-1995}{5}\)

=> \(\frac{x-1995}{1990}+\frac{x-1995}{1980}-\frac{x-1995}{15}-\frac{x-1995}{5}=0\)

=> \(\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\right)=0\)

Vì \(\frac{1}{1990}+\frac{1}{1980}\ne\frac{1}{15}+\frac{1}{5}\)           =>   \(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\ne0\)

=> x - 1995 = 0

=> x = 1995

10 tháng 1 2016

\(\frac{x-5}{1990}+\frac{x-15}{1980}=\frac{x-1980}{15}+\frac{x-1990}{5}\)

\(\Leftrightarrow\frac{x-5}{1990}-1+\frac{x-15}{1980}-1-\frac{x-1980}{15}+1-\frac{x-1990}{5}+1=0\)

\(\Leftrightarrow\frac{x-1995}{1990}+\frac{x-1995}{1980}-\frac{x-1995}{15}-\frac{x-1995}{5}=0\)

\(\Leftrightarrow\left(x-1995\right).\left(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\right)=0\)

<=>x=1995 

:(

15 tháng 6 2017

a) x2 + y2 +2x - 4y + 5 = 0

( x2 + 2x + 1 ) + ( y2 - 4y + 4 ) = 0

( x + 1 )2 + ( y - 2 )2 = 0

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

15 tháng 6 2017

b) \(x^2+4y^2-x-4y+\dfrac{5}{4}=0\)

\(x^2-x+\dfrac{1}{4}+4y^2-4y+1=0\)

\(\left(x-\dfrac{1}{2}\right)^2+\left(2y-1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\2y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)

17 tháng 1 2018

\(\frac{x-5}{1990}-1+\frac{x-15}{1980}-1=\frac{x-1980}{15}-1+\frac{x-1990}{5}-1\)

\(\frac{x-1995}{1990}+\frac{x-1995}{1980}-\frac{x-1995}{15}-\frac{x-1995}{5}=0\)

\(\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\right)=0\)

Mà \(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\ne0\)

Nên \(x-1995=0\Leftrightarrow x=1995\)

29 tháng 3 2017

BPT \(\Leftrightarrow\dfrac{x+1987}{2002}+\dfrac{x+1988}{2003}-\dfrac{x+1989}{2004}+\dfrac{x+1990}{2005}>0\)

\(\Leftrightarrow\left(\dfrac{x+1987}{2002}-1\right)+\left(\dfrac{x+1988}{2003}-1\right)-\left(\dfrac{x+1989}{2004}-1\right)-\left(\dfrac{x+1990}{2005}-1\right)>0\)

\(\Leftrightarrow\dfrac{x-15}{2002}+\dfrac{x-15}{2003}-\dfrac{x-15}{2004}-\dfrac{x-15}{2005}>0\)

\(\Leftrightarrow\left(x-15\right)\left(\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}\right)>0\)

\(\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}>0\)

\(\Rightarrow x-15>0\)

\(\Leftrightarrow x>15\)

Vậy bpt có nghiệm x > 15

29 tháng 3 2017

\(\dfrac{x+1987}{2002}+\dfrac{x+1988}{2003}-2>\dfrac{x+1989}{2004}+\dfrac{x+1990}{2005}-2\)

\(\Leftrightarrow\left(\dfrac{x+1987}{2002}-1\right)+\left(\dfrac{x+1988}{2003}-1\right)\)

\(-\left(\dfrac{x+1989}{2004}-1\right)-\left(\dfrac{x+1990}{2005}-1\right)\)

quy đồng lên ta được:

\(\left(\dfrac{x+1987-2002}{2002}\right)+\left(\dfrac{x-1998-2003}{2003}\right)\)

\(-\left(\dfrac{x+1989-2004}{2004}\right)-\left(\dfrac{x+1990-2005}{2005}\right)>0\)

\(\Leftrightarrow\left(\dfrac{x-15}{2002}\right)+\left(\dfrac{x-15}{2003}\right)-\left(\dfrac{x-15}{2004}\right)-\left(\dfrac{x-15}{2005}\right)>0\)

đặt nhân tử chung ta được:

\(\Leftrightarrow\left(x-15\right)\left(\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}\right)>0\)

Vì:

\(\left(\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}\in Z\right)\) nên ta xét \(x-15>0\Rightarrow x>15\)

25 tháng 4 2019

3(x-2)-2(3x+1)>0

<=>3x-6-6x-2>0

<=>-2x-8>0

<=>-x-4>0

<=>x>-4

25 tháng 6 2019

TL:

\(x^2-6x+9-4>0\) 

\(\left(x-3\right)^2-4>0\)

\(\left(x-3\right)^2-2^2>0\) 

\(\left(x-3+2\right)\left(x-3-2\right)>0\)

(x-1)(x-5)>0

=>x>5

vậy.......

hc tốt

25 tháng 6 2019

thêm 1 trường hợp:

x<1 nha

chúc bn

hc tốt

16 tháng 2 2018

pt ẩn x : \(\left(2m-1\right)x-25+m=0\)

a) Để pt là pt bậc nhất khi \(2m-1\ne0\Rightarrow m\ne\dfrac{1}{2}\)

Vậy \(m\ne\dfrac{1}{2}\) thì pt là pt bậc nhất.

b) Khi m = -1 ta có : \(\left(2\cdot\left(-1\right)-1\right)\cdot x-25+\left(-1\right)=0\)

\(\Leftrightarrow-3x-26=0\)

\(\Rightarrow x=-\dfrac{26}{3}\)

Vậy khi m = -1 thì x = \(-\dfrac{26}{3}\).