Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 2x - 1 )( x2 - 6x + 15 ) > 0
Ta có : x2 - 6x + 15 = ( x2 - 6x + 9 ) + 6 = ( x - 3 )2 + 6 ≥ 6 > 0 ∀ x
Để bpt > 0 => 2x - 1 > 0
=> 2x > 1
=> x > 1/2
Vậy nghiệm của bất phương trình là x > 1/2
\(\frac{5x+4}{x^2+2x+7}< 0\)
Ta có : x2 + 2x + 7 = ( x2 + 2x + 1 ) + 6 = ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
Để bpt < 0 => 5x + 4 < 0
=> 5x < -4
=> x < -4/5
Vậy nghiệm của bất phương trình là x < -4/5
\(x^2-6x+5>0\)
\(\Leftrightarrow x^2-x-5x+5>0\)
\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>1\\x>5\end{cases}}\) hoặc \(\hept{\begin{cases}x< 1\\x< 5\end{cases}}\)
Vậy : x > 5 hoặc x < 1
=.= hk tốt!!
Nghiệm của bất phương trình đc biểu diễn trên trục số
0 5 10 15 20 25 30 ( xấu quá thong cảm )
Kết quả thu đc :x\(\in\){1}U{5}
ko chắc lắm
hc tốt
a. Ta có:
\(x^2-6x+3=0\Leftrightarrow x^2-2.x.3+3^2-6=0\)
\(\Leftrightarrow\left(x-3\right)^2-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=\sqrt{6}\\x-3=-\sqrt{6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)
Ta có:
\(x^2-7x+14=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{7}{2}+\dfrac{49}{4}+\dfrac{7}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}=0\)
Ta có: \(\left(x+\dfrac{7}{2}\right)^2\ge0\)
=> \(\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}>0\)
=> pt vô nghiệm
a) \(x^2-x-6>0\)
\(\Leftrightarrow x^2-3x+2x-6>0\)
\(\Leftrightarrow\left(x^2-3x\right)+\left(2x-6\right)>0\)
\(\Leftrightarrow x.\left(x-3\right)+2.\left(x-3\right)>0\)
\(\Leftrightarrow\left(x-3\right).\left(x+2\right)>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3>0\\x+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0+3\\x>0-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>3\\x>-2\end{matrix}\right.\)
Vậy tập hợp nghiệm của bất phương trình \(x^2-x-6>0\) là: \(S=\left\{x>3;x>-2\right\}.\)
Chúc bạn học tốt!
6x4 - x3 - 7x2 + x + 1 = 0
=> (x + 1)(3x + 1)(x - 1)(2x - 1) = 0
=> x + 1 = 0 => x = -1
hoặc 3x + 1 = 0 => x = -1/3
hoặc x - 1 = 0 => x = 1
hoặc 2x - 1 = 0 => x = 1/2
Vậy x = -1, x = -1/3, x = 1 , x = 1/2
a) \(-x^2+3x+4>0\)
\(\Leftrightarrow-\left(x^2-3x-4\right)>0\)
\(\Leftrightarrow x^2-3x-4< 0\)
\(\Leftrightarrow x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{25}{4}< 0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2-\frac{25}{4}< 0\)
\(\Leftrightarrow\left(x-\frac{3}{2}-\frac{5}{2}\right)\left(x-\frac{3}{2}+\frac{5}{2}\right)< 0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)< 0\)
\(\Leftrightarrow1< x< 4\)
b) \(x^2-6x+5\ge0\)
\(\Leftrightarrow x^2-2.3x+9-4\ge0\)
\(\Leftrightarrow\left(x-3\right)^2-4\ge0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+3\right)\ge0\)
\(\Leftrightarrow x\left(x-5\right)\ge0\)
Còn lại tự làm
\(x^4+x^3+6x^2=-5x-5\)
\(\Leftrightarrow x^4+x^3+6x^2+5x+5=0\)
\(\Leftrightarrow x^4+x^3+x^2+5x^2+5x+5=0\)
\(\Leftrightarrow x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\\x^2+5=0\end{matrix}\right.\) (vô nghiệm)
Vậy PT trên vô nghiệm
x^4+x^3+6x^2+5x+5 = 0 => (x^4+x^3+x^2)+(5x^2+5x+5) = 0 (x^2+x+1).(x^2+5) = 0 Vì x^2+x+1 và x^2+5 đều > 0 => pt vô nghiệm
=>(x-3)(x+2)(x+4)=0
=>\(\hept{\begin{cases}x-3=0\\x+2=0\\x+4=0\end{cases}=>\hept{\begin{cases}x=3\\x=-2\\x=-4\end{cases}}}\)
d)=>(x-4)(x-1)(x+2)=0
=>\(\hept{\begin{cases}x-4=0\\x-1=0\\x+2=0\end{cases}=>\hept{\begin{cases}x=4\\x=1\\x=-2\end{cases}}}\)
Ai k mk mk sẽ k lại
Bạn ơi bạn học lớp 8 rồi bạn có thể giải giú mình 2 bài toán lớp 7 đang đăng ko. Nếu đc minh cảm ơn nhiều nhé
TL:
\(x^2-6x+9-4>0\)
\(\left(x-3\right)^2-4>0\)
\(\left(x-3\right)^2-2^2>0\)
\(\left(x-3+2\right)\left(x-3-2\right)>0\)
(x-1)(x-5)>0
=>x>5
vậy.......
hc tốt
thêm 1 trường hợp:
x<1 nha
chúc bn
hc tốt