\(\sqrt{x^3+2x+4}=\sqrt{2-x}\)

mấy thánh giúp mk với 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

<=> x^3+3x+2=0 (1);  {a=3;b=2}

\(\Delta_2=\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}=\sqrt{\frac{2^2}{4}+\frac{3^3}{27}}=\sqrt{2}\)

\(\Delta_3=\sqrt[3]{\frac{b}{2}+-\Delta_2}=\sqrt[3]{1+-\sqrt{2}}\)

\(x=\frac{a-3\Delta_3}{3\Delta_3}\)

\(x=\frac{3-\sqrt[3]{\left(1+-\sqrt{2}\right)^2}}{3.\sqrt[3]{1+-\sqrt{2}}}=\frac{1-\sqrt[3]{\left(1+-\sqrt{2}\right)^2}}{\sqrt[3]{1+-\sqrt{2}}}\)

(1) chỉ có nghiệm thực -1<x<1

\(x=\frac{3-\sqrt[3]{\left(1+\sqrt{2}\right)^2}}{3.\sqrt[3]{1+\sqrt{2}}}=\frac{1-\sqrt[3]{\left(1+\sqrt{2}\right)^2}}{\sqrt[3]{1+\sqrt{2}}}\)

16 tháng 12 2016

đây hình như là công thức cardano mà 

7 tháng 3 2016

mấy bạn giải hộ mk đi

2 tháng 3 2020

mình làm nốt câu còn lại ok

b) ta thấy x = 0 không là nghiệm của phương trình

chia cả 2 vế cho x khác 0, ta được :

\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)

đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)

Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)

Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)

Vậy ...

2 tháng 3 2020

a) Từ phương trình đã cho ta có: \(x\ge0\)

Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0

Nhân với liên hợp của vế trái ta được:

\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)

Kết hợp với phương trình đã cho ta có:

\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)

Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)

8 tháng 10 2016

4. ĐKXĐ: \(x\ge-2\)

Biến đổi pt đã cho thành: \(\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2\left(x^2-2x+4\right)-2\left(x+2\right)\)
Đặt \(\sqrt{x+2}=a\\ \sqrt{x^2-2x+4}=b\left(a,b\ge0\right)\) 

Pt đã cho trở thành:
2a^2 -2b^2 - ab =0
Giải tìm a,b rồi tìm x .

8 tháng 10 2016

1. ĐKXĐ: \(0\le x\le1\)

Bình phương 2 vế của pt đã cho ta được: 
 \(x-\sqrt{x}-4=0\)

Cậu tự giải nốt nhé. 

16 tháng 2 2017

\(x^2+2x+4=3\sqrt{x^3+4x}\)đk \(x\ge0\)

\(x^2+2x+4=3\sqrt{x\left(x^2+4\right)}\)

đặt \(x^2+4=t\)

=> \(t+2x=3\sqrt{tx}\Leftrightarrow t^2-5tx+4x^2=0\)

\(\Leftrightarrow\left(t-x\right)\left(t-4x\right)=0\Leftrightarrow\orbr{\begin{cases}t=x\\t=4x\end{cases}}\)

nếu t=x phương trình trở thành \(x^2+4=x\Leftrightarrow x^2-x+4=0\Rightarrow ptvonghiem\)

nếu t=4x phương trinh trở thành \(x^2+4=4x\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

vậy x=2 là nghiệm của pt 

15 tháng 2 2017

x=2

nhớ k cho nha

12 tháng 6 2017

đề có sai ko nhỉ xài đủ pp mà vừa lẻ vừa xấu hết

26 tháng 6 2017

Đề đúng nhé các bạn. Bài này phải sử dụng pp hàm số mới đc. có thể vô ngiệm hoặc nghiệm xấu đấy