\(\sqrt{x-2}+\sqrt{10-x}=x^2-12x+40\)

 

Giúp mik với

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

\(\sqrt{x-2}\)+\(\sqrt{x-10}\)= x\(^2\)-12x+36+4

<=>\(\sqrt{x-2}\)+\(\sqrt{x-10}\)-4=(x-6)\(^2\)

<=>(\(\sqrt{x-2}\)-2)+(\(\sqrt{x-10}\)-2)=(x-6)\(^2\)

<=>\(\dfrac{x-6}{\sqrt{x-2}+2}\)-\(\dfrac{x-6}{\sqrt{x-10}+2}\)-(x-6)\(^2\)=0

Nghiệm x = 6

Mk cũng k biết đúng hay k nữa ! hahahahaha!

31 tháng 10 2019

Em thử sử dụng phương pháp :Dùng BĐT ạ!

ĐKXĐ: \(2\le x\le10\)

Áp dụng BĐT Bunykovski: \(VT=\sqrt{x-2}+\sqrt{10-x}\le\sqrt{2\left(x-2+10-x\right)}=4\)

Lại có: \(VP=\left(x^2-12x+36\right)+4=\left(x-6\right)^2+4\ge4\)

Từ đó suy ra \(VT\le4\le VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{10-x}\\x-6=0\end{matrix}\right.\Leftrightarrow x=6\)

b2

\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)

14 tháng 8 2017

Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)

Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)

và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)

Do đó \(VT\ge VF\)

Dấu = xảy ra khi\(x=\frac{1}{2}\)

19 tháng 4 2019

mik mò ra No :))))

19 tháng 4 2019

mình nhầm \(12x\sqrt{3x+1}+12x+\sqrt{3x+1}+2=0\)

nhé!

NV
13 tháng 11 2019

a/ ĐKXĐ: ...

Đặt \(\sqrt{4-x^2}=a>0\)

\(\frac{x^3}{a}-a^2=0\Leftrightarrow x^3-a^3=0\)

\(\Leftrightarrow x=a\) (\(x>0\))

\(\Leftrightarrow x=\sqrt{4-x^2}\Leftrightarrow x^2=4-x^2\)

\(\Leftrightarrow x^2=2\Rightarrow x=\sqrt{2}\)

b/ Đặt \(\sqrt{x^2+1993}=a>0\Rightarrow a^2-x^2=1993\)

\(x^4+a=a^2-x^2\)

\(\Leftrightarrow x^4-a^2+x^2+a=0\)

\(\Leftrightarrow\left(x^2+a\right)\left(x^2-a+1\right)=0\)

\(\Leftrightarrow x^2+1=a\Leftrightarrow x^2+1=\sqrt{x^2+1993}\)

\(\Leftrightarrow x^4+2x^2+1=x^2+1993\)

\(\Leftrightarrow x^4+x^2-1992=0\)

NV
13 tháng 11 2019

c/

ĐKXĐ: \(2\le x\le10\)

Ta có \(VT\le\sqrt{2\left(x-2+10-x\right)}=4\)

\(VP=x^2-12x+36+4=\left(x-6\right)^2+4\ge4\)

\(\Rightarrow VT\le VP\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-2=10-x\\x-6=0\end{matrix}\right.\) \(\Rightarrow x=6\)

15 tháng 1 2019

xét vế trái :

\(\sqrt[]{x-2}+\sqrt{10-x}=< \sqrt{2\left(x-2+10-x\right)}=< 4\)

=>vp=<4

=>\(x^2-12x+40=< 4\)

=>\(\left(x-6\right)^2=< 0\)

=> xảy ra dấu = <=>x=6

vậy pt có nghiệm là 6

30 tháng 11 2017

Asp dụng BĐT Bunha, ta có:

\(\left(\sqrt{x-2}+\sqrt{10-x}\right)^2\le\left(1+1\right)\left(x-2+10-x\right)\le16\)

\(\Rightarrow\sqrt{x-2}+\sqrt{x-10}\le4\)

\(x^2-12x+40=\left(x-6\right)^2+4\ge4\)

\(\Rightarrow VT\le4\le VT\)

Dấu " = " xảy ra khi \(\Leftrightarrow VT=4=VT\)

\(\Leftrightarrow x=6\)

30 tháng 11 2017

Thanks bạn Wrecking ball rất nhiều

17 tháng 8 2020

a) \(\sqrt{1-x}=\sqrt[3]{8}\) ( ĐK: \(x\le1\) )

\(\Leftrightarrow\sqrt{1-x}=2\)

\(\Leftrightarrow1-x=4\)

\(\Leftrightarrow x=-3\) ( Thỏa mãn )

b) \(\sqrt{4x^2-12x+9}=x+1\) ( ĐK : \(x\ge-1\) )

\(\Leftrightarrow\sqrt{\left(2x\right)^2-2.2x.3+3^2}=x+1\)

\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x+1\)

\(\Leftrightarrow\left|2x-3\right|=x+1\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=x+1\\3-2x=x+1\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{2}{3}\end{cases}}\) ( Thỏa mãn )

c) \(x+\sqrt{x}-2=0\) ( ĐK : \(x\ge0\) )

\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\sqrt{x}-1=0\)

\(\Leftrightarrow x=1\) ( Thỏa mãn )

17 tháng 8 2020

+) ĐKXĐ : \(x\le1\)

 \(\sqrt{1-x}=\sqrt[3]{8}\)

\(\Leftrightarrow\sqrt{1-x}=2\)

\(\Leftrightarrow1-x=4\)

\(\Leftrightarrow x=-3\left(TM\right)\)

+)  \(\sqrt{4x^2-12x+9}=x+1\)

\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x+1\)

\(\Leftrightarrow\left|2x-3\right|=x+1\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=x+1\left(x\ge\frac{3}{2}\right)\\2x-3=-x-1\left(x< \frac{3}{2}\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-x=3+1\\2x+x=3-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\3x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{2}{3}\end{cases}\left(TM\right)}}\)

+) ĐKXĐ : \(x\ge0\)

 \(x+\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=2\)

+) \(\hept{\begin{cases}\sqrt{x}=1\\\sqrt{x}+1=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=1\end{cases}\Leftrightarrow}x=1\left(TM\right)}\)

+) \(\hept{\begin{cases}\sqrt{x}=2\\\sqrt{x}+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{2}\\x=0\end{cases}}}\left(TM\right)\)

NV
13 tháng 11 2019

ĐKXĐ: \(2\le x\le10\)

Ta có \(VT\le\sqrt{2\left(x-2+10-x\right)}=4\)

\(VT=x^2-12x+36+4=\left(x-6\right)^2+4\ge4\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-2=10-x\\x-6=0\end{matrix}\right.\) \(\Rightarrow x=6\)