\(\sqrt{4x+20}-3\sqrt{5+x}+\frac{4}{3}\sqrt{9x+45}=6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 9 2020

ĐKXĐ: \(x\ge-5\)

\(\Leftrightarrow\sqrt{4\left(x+5\right)}-3\sqrt{x+5}+\frac{4}{3}\sqrt{9\left(x+5\right)}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

\(\Leftrightarrow x+5=4\Rightarrow x=-1\)

16 tháng 9 2018

ĐK: \(x\ge0\)\(4\sqrt{x}-2\sqrt{9x}+16\sqrt{x}=5\)  5  (=) \(\sqrt{x}\left(4-2\sqrt{9}+16\right)=5\) (=) \(\sqrt{x}.14=5\)(=) x=\(\frac{25}{196}\)

ĐK: \(x\ge-5\)PT(=) \(\sqrt{5+x}\left(\sqrt{4}-3+\frac{4}{3}.3\right)=6\) (=) \(\sqrt{5+x}.3=6\) (=)\(\sqrt{5+x}=2\)(=) X = -1 (nhận)

14 tháng 7 2019

\(a,\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)\(ĐKXĐ:x\ge-\frac{5}{7}\)

\(\Leftrightarrow9x-7=7x+5\)

\(\Leftrightarrow9x-7x=5+7\)

\(\Leftrightarrow2x=12\)

\(\Leftrightarrow x=6\)

14 tháng 7 2019

\(b,\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3.\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}\left(2+1-1\right)=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\)

29 tháng 6 2017

a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (1)

\(\Leftrightarrow9x-7=\sqrt{\left(7x+5\right)\left(7x+5\right)}\)

\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)\left(7x+5\right)}=7\)

\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)^2}=7\)

\(\Leftrightarrow9x-\left|7x+5\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}9x-\left(7x+5\right)=7\left(đk:7x+5\ge0\right)\\9x-\left[-\left(7x+5\right)\right]=7\left(đk:7x+5< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(đk:x\ge-\dfrac{5}{7}\right)\\x=\dfrac{1}{8}\left(đk:x< -\dfrac{5}{7}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow x=6\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{6\right\}\)

b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x+5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\) (2)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3\cdot\dfrac{\sqrt{x+5}}{3}-\dfrac{1}{3}\cdot\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow\sqrt{4}\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot\sqrt{9}\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}=4\)

\(\Leftrightarrow\sqrt{x-5}=4-\sqrt{x+5}\)

\(\Leftrightarrow x-5=\left(4-\sqrt{x+5}\right)^2\)

\(\Leftrightarrow x-5=16-8\sqrt{x+5}+x+5\)

\(\Leftrightarrow-5=16-8\sqrt{x+5}+5\)

\(\Leftrightarrow-5=21-8\sqrt{x+5}\)

\(\Leftrightarrow8\sqrt{x+5}=21+5\)

\(\Leftrightarrow8\sqrt{x+5}=26\)

\(\Leftrightarrow\sqrt{x+5}=\dfrac{13}{4}\)

\(\Leftrightarrow x+5=\dfrac{169}{16}\)

\(\Leftrightarrow x=\dfrac{169}{16}-5\)

\(\Leftrightarrow x=\dfrac{89}{16}\)

Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{89}{16}\right\}\)

30 tháng 6 2017

Nick cũ không đi giải lấy nick mới giải làm gì vậy Tuấn Anh Phan Nguyễn ? :D

25 tháng 10 2020

a) \(\sqrt{\left(2x-1\right)^2}=3\)

⇔ \(\left|2x-1\right|=3\)

⇔ \(\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\)

⇔ \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

b) \(3\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)

ĐKXĐ : \(x\ge0\)

⇔ \(3\sqrt{x}-2\sqrt{3^2x}+\sqrt{4^2x}=5\)

⇔ \(3\sqrt{x}-2\cdot3\sqrt{x}+4\sqrt{x}=5\)

⇔ \(7\sqrt{x}-6\sqrt{x}=5\)

⇔ \(\sqrt{x}=5\)

⇔ \(x=25\)( tm )

c) \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{3}{4}\sqrt{9x+45}=6\)

ĐKXĐ : \(x\ge-5\)

⇔ \(\sqrt{2^2\left(x+5\right)}-3\sqrt{x+5}+\frac{3}{4}\sqrt{3^2\left(x+5\right)}=6\)

⇔ \(2\sqrt{x+5}-3\sqrt{x+5}+\frac{3}{4}\cdot3\sqrt{x+5}=6\)

⇔ \(-\sqrt{x+5}+\frac{9}{4}\sqrt{x+5}=6\)

⇔ \(\frac{5}{4}\sqrt{x+5}=6\)

⇔ \(\sqrt{x+5}=\frac{24}{5}\)

⇔ \(x+5=\frac{576}{25}\)

⇔ \(x=\frac{451}{25}\left(tm\right)\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)

 

17 tháng 7 2019

a) \(\sqrt{1-4x+4x^2}=5\)

<=> \(\sqrt{4x^2-4x+1}=5\)

<=> 4x2 - 4x + 1 = 52

<=> 4x2 - 4x + 1 = 25

<=> 4x2 - 4x + 1 - 25 = 0

<=> 4x2 - 4x - 24 = 0

<=> 4(x + 2)(x - 3) = 0

<=> x = -2 hoặc x = 3

 => x = -2 hoặc x = 3

b) \(\sqrt{4-5x}=12\)

<=> \(\sqrt{-5x+4}=12\)

<=> -5x + 4 = 122

<=> -5x + 4 = 144

<=> -5x = 144 - 4

<=> -5x = 140

<=> x = -28

=> x = -28

\(a,\sqrt{1-4x+4x^2}=5\)

\(\Rightarrow4x^2-4x+1=25\)

\(\Rightarrow4x^2-4x-24=0\)

\(\Rightarrow x^2-x-6=0\)

\(\Rightarrow x^2-3x+2x-6=0\)

\(\Rightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)

\(b,\sqrt{4-5x}=12\)

\(\Rightarrow4-5x=144\)

\(\Rightarrow5x=-140\)

\(\Rightarrow x=-28\)